Answer on Question \#44746-Math-Statistics and Probability

The table below shows the time distribution of fifty depositors to finish a transaction with bank personnel.
Time Number of Depositors (f) (nearest minute)

23-25 4

20-22 6

17-19 16

14-16 8

11-13 8

8-10 6

5-7 2
Determine the values of:
a) We can estimate the Mean by using the midpoints.

Midpoint (x)	Frequency (f)	$f \cdot x$
24	4	96
21	6	126
18	16	288
15	8	120
12	8	96
9	6	54
6	2	12
Totals:	50	792

So an estimate of the mean is

$$
\text { Estimated Mean }=\frac{792}{50}=15.8
$$

b) if we need to estimate a single Median value we can use this formula:

$$
\text { Estimated Median }=L+\frac{\frac{n}{2}-c f_{b}}{f_{m}} \cdot w
$$

where:
L is the lower class limit of the group containing the median,
n is the total number of data,
$c f_{b}$ is the cumulative frequency of the groups before the median group,
f_{m} is the frequency of the median group,
w is the group width.

The median group is 17-19.

For our example:

$$
\begin{gathered}
L=16.5, n=50, c f_{b}=4+6=10, f_{m}=16, w=3 . \\
\text { Estimated Median }=16.5+\frac{\frac{50}{2}-10}{16} \cdot 3=19.3
\end{gathered}
$$

c) We can easily identify the modal group (the group with the highest frequency), which is 17-19.

We can estimate the Mode using the following formula:

$$
\text { Estimated Mode }=L+\frac{f_{m}-f_{m-1}}{\left(f_{m}-f_{m-1}\right)+\left(f_{m}-f_{m+1}\right)}
$$

where:
L is the lower class limit of the modal group
f_{m-1} is the frequency of the group before the modal group
f_{m} is the frequency of the modal group
f_{m+1} is the frequency of the group after the modal group w is the group width.

In this example:

$$
\begin{gathered}
\qquad L=16.5, f_{m}=16, f_{m-1}=6, f_{m+1}=8, w=3 \\
\text { Estimated Mode }=16.5+\frac{16-6}{(16-6)+(16-8)}=17.0
\end{gathered}
$$

d) First quartile lies in $\frac{50}{4}=12.5$ place. And exact first quartile is

$$
\text { first quartile }=\mathrm{L}+\frac{\frac{N}{4}-c f}{f} \cdot w
$$

where L is lower limit of first quartile class, f is frequency of first quartile class , $c f$ is cumulative frequency of pre-first quartile class,w is size of first quartile class,N is total numbers of items. In this example (first quartile class is 17-19):

$$
\begin{gathered}
L=16.5, f=16, N=50, c f=4+6=10, w=3 . \\
\text { first quartile }=16.5+\frac{\frac{50}{4}-10}{16} \cdot 3=17.0
\end{gathered}
$$

e) Fourth quartile lies in 50 place. And exact first quartile is

$$
\text { fourth quartile }=\mathrm{L}+\frac{N-c f}{f} \cdot w
$$

where L is lower limit of fourth quartile class, f is frequency of fourth quartile class, $c f$ is cumulative frequency of pre-fourth quartile class,w is size of fourth quartile class,N is total numbers of items.

In this example (fourth quartile class is 5-7):

$$
\begin{aligned}
& L=5, f=2, N=50, c f=48, w=3 . \\
& \text { fourth quartile }=5+\frac{50-48}{2} \cdot 3=8 .
\end{aligned}
$$

f) kth percentile is

$$
\text { kth percentile }=\mathrm{L}+\frac{\frac{k N}{100}-c f}{f} \cdot w
$$

where L is lower limit of P_{k} class, f is frequency of P_{k} class, $c f$ is cumulative frequency of the class just preceding P_{k} class, w is size of P_{k} class,N is total numbers of items.

In this example (first quartile class is 11-13):

$$
\begin{gathered}
\qquad L=10.5, f=8, N=50, c f=34, w=3 \\
\text { 80th percentile }=10.5+\frac{\frac{80 \cdot 50}{100}-34}{8} \cdot 3=12.7
\end{gathered}
$$

