Answer on Question \#44742-Math - Algebra

Given the quadratic function $y=a x^{2}+b x+c$, the maximum value is $a^{2}+4$ at $x=1$, and the graph passes through point $(3,1)$. Find the values of the constants a, b and c .

Solution.

$y=a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a}$.
y has maximum when $x=-\frac{b}{2 a}$ and $a<0$,
so $1=-\frac{b}{2 a} \rightarrow b=-2 a$.
If $y(1)=a^{2}+4$ than $a+b+c=a^{2}+4$.
If the graph passes through point $(3,1)$ than $1=9 a+3 b+c$.
So, we have 3 equations to find a, b and c :
$\left\{\begin{array}{c}b=-2 a \\ a+b+c=a^{2}+4 \\ 9 a+3 b+c=1\end{array}\right.$
Substitute $b=-2 a$ into the second and the third equations.
$\left\{\begin{array}{c}b=-2 a \\ a-2 a+c= \\ 9 a+3(-2 a)+c=1\end{array} a^{2}+4\right.$
$\left\{\begin{array}{c}b=-2 a \\ c-a=a^{2}+4 \\ 3 a+c=1\end{array}\right.$
From the third equation we conclude $\boldsymbol{c}=1-3 a$ and substitute it into the second equation
$\left\{\begin{array}{c}b=-2 a \\ 1-3 a-a=a^{2}+4 \\ c=1-3 a\end{array}\right.$

$$
\left\{\begin{array}{c}
b=-2 a \\
a^{2}+4 a+3=0 \\
c=1-3 a
\end{array}\right.
$$

Equation $a^{2}+4 a+3=0$ has two solutions: $a=-1$ and $a=-3$, which satisfy condition $a<0$.

Finally, $b=-2 a$ and $c=1-3 a$.
This system has two solutions:
$a=-1, \quad b=2, \quad c=4$
and
$a=-3, \quad b=6, \quad c=10$.
Answer: $(a, b, c)=(-1,2,4)$ or $(a, b, c)=(-3,6,10)$.

