Answer on Question \#44738 - Math - Abstract Algebra:

Let $S=\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$.
(a) Check that S is a subring of $M_{2}(\mathbb{R})$ and it is a commutative ring with identity.
(b) Is S an ideal of $M_{2}(\mathbb{R})$? Justify your answer.
(c) Is S an integral domain? Justify your answer.
(d) Find all the units of the ring S.
(e) Check whether $I=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \in S|2| a\right\}$ is an ideal of S.
(f) Show that S is congruent to $\mathbb{Z} \times \mathbb{Z}$ where the addition and multiplication operations are componentwise addition and multiplication.

Solution.

(a)

We need to check the following properties:

$$
\begin{gathered}
\forall A, B \in S: A+B, A \cdot B \in S \\
\forall A, B \in S: A \cdot B=B \cdot A \\
\exists e \in S: \forall A \in S: A \cdot e=A
\end{gathered}
$$

So:

$$
\left.\left.\begin{array}{c}
A, B \in S \Rightarrow A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), B=\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
A+B=\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right) \in S \\
A \cdot B=\left(\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right) \in S
\end{array} ;\right. \\
B \cdot A=\left(\begin{array}{cc}
c a & 0 \\
0 & d b
\end{array}\right)=\left(\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right)=A \cdot B ;
\end{array}\right] \begin{array}{cc}
a \cdot 1 & 0 \\
0 & b \cdot 1
\end{array}\right)=A . ~ .\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \in S, A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \Rightarrow A \cdot e=\left(\begin{array}{c}
a
\end{array}\right)
$$

So, S is a commutative ring with identity e.
(b)

Prove that S is not ideal of $M_{2}(\mathbb{R})$.
Assume the contrary.
S is an ideal $\Rightarrow \forall A \in M_{2}(\mathbb{R}), \forall X \in S: A \cdot X \in S$;

$$
e \in S \Rightarrow \forall A \in M_{2}(\mathbb{R}): A \cdot e=A \in S \Rightarrow S=M_{2}(\mathbb{R})
$$

But, for example, $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \notin S$.
So, our assumption doesn't hold and S is not ideal.
(c)
S is not an integral domain, because:

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \neq 0, B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \neq 0, A \cdot B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0
$$

(d)

Assume that $x=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ is a unit of the ring S. So:

$$
\begin{gathered}
\exists y=\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right) \in S: x \cdot y=e ; \\
x \cdot y=\left(\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Rightarrow a c=b d=1 ; \\
a, c \in \mathbb{Z}, a c=1 \Rightarrow\left[\begin{array}{c}
a=c=1 \\
a=c=-1
\end{array}\right.
\end{gathered}
$$

Hence:

$$
a, b= \pm 1 \Rightarrow x \in\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} .
$$

So, there are 4 units in S : $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
(e)

$$
A \in S, B \in I \Rightarrow A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), B=\left(\begin{array}{cc}
2 n & 0 \\
0 & m
\end{array}\right) \Rightarrow A \cdot B=\left(\begin{array}{cc}
2 a n & 0 \\
0 & b m
\end{array}\right) \in I .
$$

So, I is an ideal of S.
(f)

We need to show that the mapping $f: S \rightarrow \mathbb{Z} \times \mathbb{Z}, f\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)=(a, b)$ is an isomorphism of rings.
Note that f is bijective. Show that f saves both operations:

$$
\begin{gathered}
A, B \in S \Rightarrow A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), B=\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right) ; \\
f(A \cdot B)=f\left(\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right)=(a c, b d)=(a, b)(c, d)=f(A) f(B) ; \\
f(A+B)=f\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right)=(a+c, b+d)=(a, b)+(c, d)=f(A)+f(B) ; \\
f\left(0_{S}\right)=(0,0)=0_{\mathbb{Z} \times \mathbb{Z}} \\
f\left(e_{S}\right)=(1,1)=e_{\mathbb{Z} \times \mathbb{Z}} .
\end{gathered}
$$

So, f is an isomorphism of rings.

