Answer on Question \#44713 - Math - Statistics and Probability

In studying the relationship between loan delinquency and borrower characteristics, a bank found the following information: - 80% of borrowers have been employed at their present job for 3 or more years, - Of the borrowers who have been employed at their present job for 3 or more years, 5% are behind in their payments - Of the borrowers who have been employed at their present job for less than 3 years, 15% are behind in their payments.
If a loan account is randomly selected, what is the probability that the borrower has been employed at their present job for less than 3 years AND is behind in their payments?
(a)
0.17
(b) 0.03
(c) $\quad 0.20$
(d) 0.014
(e) 0.24

If a loan account is randomly selected, what is the probability that the borrower has been employed at their present job for 3 or more years OR is not behind in their payments?
(a)
0.76
(b)
0.744
(c)
0.97
(d) 0.83
(e) 0.96

If a loan account is randomly selected from a borrower who has been employed at their present job for 3 or more years, what is the probability that the borrower is behind in their payments?
(a) 0.5714
(b) 0.05
(c) 0.04
(d) 0.056
(e) 0.07

Solution:

This is a conditional probability problem.
Let the events be as follows:
A - have been employed for 3 or more years,
B - are behind in their payments.

$$
\begin{gathered}
P(A)=0.8 \\
P(B \mid A)=0.05 \\
P\left(B \mid A^{\prime}\right)=0.15
\end{gathered}
$$

If a loan account is randomly selected, what is the probability that the borrower has been employed at their present job for less than 3 years AND is behind in their payments? (a) 0.17 (b) 0.03 (c) 0.20 (d) 0.014 (e) 0.24
$P\left(A^{\prime} \cap B\right)=P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right)=(1-0.8) \cdot 0.15=0.03$, answer (b).

If a loan account is randomly selected, what is the probability that the borrower has been employed at their present job for 3 or more years OR is not behind in their payments? (a) 0.76 (b) 0.744 (c) 0.97 (d) 0.83 (e) 0.96

$$
\begin{gathered}
P\left(A \cup B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)-P\left(A \cap B^{\prime}\right) \\
P\left(A \cap B^{\prime}\right)=P(A) \cdot P\left(B^{\prime} \mid A\right)=P(A) \cdot(1-P(B \mid A))=0.8 \cdot(1-0.05)=0.76 \\
P(A \cap B)=P(A) \cdot P(B \mid A)=0.8 * 0.05=0.04 \\
P(B)=P\left(A^{\prime} \cap B\right)+P(A \cap B)=0.03+0.04=0.07 \\
P\left(A \cup B^{\prime}\right)=0.8+(1-0.07)-0.76=0.97
\end{gathered}
$$

answer (c).

If a loan account is randomly selected from a borrower who has been employed at their present job for 3 or more years, what is the probability that the borrower is behind in their payments? (a) 0.5714 (b) 0.05 (c) 0.04 (d) 0.056 (e) 0.07
$P(B \mid A)=0.05$, answer (b).

