Answer on Question #44695 – Math - Linear Algebra

Give some detail explanation on Pseudo inverse matrix??

Solution

Pseudoinverse matrix – is a generalization of the inverse matrix in mathematics, particularly in linear algebra.

Pseudoinverse satisfies the following criteria:

- AA ^ + A = A (AA ^ + or A ^ + A is not necessarily equal to the identity matrix);
- (AA ^ +) ^ * = AA ^ + (meaning that AA ^ + - Hermitian matrix);
- A ^ + A A ^ + = A ^ +;
- (A ^ + A) ^ * = A ^ + A (A ^ + A - also Hermitian matrix);

where A ^ * - Hermitian-conjugate matrix to the matrix A. **Calculation**

- With A = BC schedule

Let r - rank matrix A size m \ times n. Then A can be represented as A = BC, where B - matrix of size m \ times r, C - matrix of size r \ times n. Then

or

-A ^ + = C ^ * (B ^ * AC ^ *) ^ {- 1} B ^ *

-where (CC ^ *) ^ {- 1} (B ^ * B) ^ {- 1} = (B ^ * BCC ^ *) ^ {- 1} = (B ^ * AC ^ *) ^ {- 1} - a smaller matrix of size r \ times r.

- Using QR decomposition

A matrix represented as A = QR, where Q - unitary matrix, Q * Q = QQ * = I, and R - upper triangular matrix. Then

- A ^ * A = (QR) ^ * (QR) = R ^ * Q ^ * QR = R ^ * R, -A ^ + = (R ^ * R) ^ + A ^ * Properties

-Pseudoinverse matrix always exists and is unique.
-Pseudoinverse matrix is equal to zero its transposition.
-Pseudoinverse is reversible to himself:

- (A ^ +) ^ + = A.

-Pseudoinverse commutes with transposition, Hermitian coupling and coupling:

- (A ^ T) ^ + = (A ^ +) ^ T, \ qquad (\ overline {A}) ^ + = \ overline {A ^ +}, \ qquad (A ^ *) ^ + = (A ^ +) ^ *.

-Pilot matrix equals its rank to pseudoinverse:

- rank $A^ + = rank A$

- Pseudoinverse matrix product of A by a scalar $\$ alpha is the product of the matrix A $^+$ on inverse number $\$ alpha $^{-1}$:

(\ alpha A) ^ + = \ alpha ^ {- 1} \; A ^ +, \ quad \ forall \ alpha \ ne 0.

-If already known matrix (A ^ * A) ^ + or matrix (AA ^ *) ^ +, they can be used to calculate A ^ +:

- A ^ + = (A ^ * A) ^ + \; A ^ * -A ^ + = A ^ * \; (AA ^ *) ^ +.

-Matrix \ A ^ + A, \; AA ^ + - is the orthogonal projection-matrices.

-If the matrix A_i formed from the matrix A by inserting another zero row / column in the i-th position, then $A_i ^+$ will be created with A^+ by adding a zero column / row in the i-th position.