Answer on Question \#44695 - Math - Linear Algebra

Give some detail explanation on Pseudo inverse matrix??

Solution

Pseudoinverse matrix - is a generalization of the inverse matrix in mathematics, particularly in linear algebra.

Pseudoinverse satisfies the following criteria:
$-A A^{\wedge}+A=A\left(A A^{\wedge}+\operatorname{or} A^{\wedge}+A\right.$ is not necessarily equal to the identity matrix);
$-\left(A A^{\wedge}+\right)^{\wedge}{ }^{*}=A A^{\wedge}+$ (meaning that $A A^{\wedge}+-$ Hermitian matrix);
$-A^{\wedge}+A A^{\wedge}+=A^{\wedge}+;$
$-\left(A^{\wedge}+A\right)^{\wedge}{ }^{*}=A^{\wedge}+A\left(A^{\wedge}+A\right.$ - also Hermitian matrix $) ;$
where $\mathrm{A} \wedge^{*}$ - Hermitian-conjugate matrix to the matrix A.

Calculation

- With A = BC schedule

Let r - rank matrix A size m \times n. Then A can be represented as $A=B C$, where B - matrix of size $m \$ times r, C - matrix of size $r \backslash$ times n. Then

```
-A^+=C^* (CC^*)^{-1} (B^* B)^{-1} B^*.
```

or
$-A^{\wedge}+=C^{\wedge} *\left(B^{\wedge} * A C \wedge *\right)^{\wedge}\{-1\} B^{\wedge} *$

- where $\left(C C^{\wedge}\right)^{\wedge}\{-1\}(B \wedge * B) \wedge\{-1\}=(B \wedge * B C C \wedge *) \wedge\{-1\}=(B \wedge * A C \wedge *) \wedge\{-1\}-$ a smaller matrix of size r times r.
- Using QR decomposition

A matrix represented as $\mathrm{A}=\mathrm{QR}$, where Q - unitary matrix, $\mathrm{Q}^{\wedge}{ }^{*} \mathrm{Q}=\mathrm{QQ} \wedge^{*}=\mathrm{I}$, and R - upper triangular matrix. Then
$-\mathrm{A}^{\wedge}{ }^{*} \mathrm{~A}=(\mathrm{QR})^{\wedge}{ }^{*}(\mathrm{QR})=\mathrm{R}^{\wedge}{ }^{*} \mathrm{Q}^{\wedge}{ }^{*} \mathrm{QR}=\mathrm{R}^{\wedge}{ }^{*} \mathrm{R}$, $-A^{\wedge}+=\left(R^{\wedge} * R\right)^{\wedge}+A^{\wedge *}$
Properties
-Pseudoinverse matrix always exists and is unique.
-Pseudoinverse matrix is equal to zero its transposition.
-Pseudoinverse is reversible to himself:
$-\left(A^{\wedge}+\right)^{\wedge}+=A$.
-Pseudoinverse commutes with transposition, Hermitian coupling and coupling:
$-\left(A^{\wedge} T\right)^{\wedge}+=\left(A^{\wedge}+\right)^{\wedge} T, \backslash$ qquad $(\backslash \text { overline }\{A\})^{\wedge}+=\backslash$ overline $\left\{A^{\wedge}+\right\}$, \backslash qquad $\left(A^{\wedge}\right)^{\wedge}+=\left(A^{\wedge}+\right.$ $)^{\wedge *}$.
-Pilot matrix equals its rank to pseudoinverse:
$-\operatorname{rank} \backslash \mathrm{A}^{\wedge}+=\operatorname{rank} \backslash \mathrm{A}$

- Pseudoinverse matrix product of A by a scalar \backslash alpha is the product of the matrix $\mathrm{A}^{\wedge}+$ on inverse $^{\text {in }}$ number \alpha^ \{-1\}:
$(\backslash \text { alpha } \mathrm{A})^{\wedge}+=\backslash$ alpha $\wedge\{-1\} \backslash ; \mathrm{A}^{\wedge}+, \backslash$ quad \backslash forall \backslash alpha \backslash ne 0.
-If already known matrix $\left(A^{\wedge}{ }^{*} A\right)^{\wedge}+$ or matrix $\left(A \wedge^{\wedge}\right)^{\wedge}+$, they can be used to calculate $A^{\wedge}+$:
$-A^{\wedge}+=\left(A^{\wedge}{ }^{*} A\right)^{\wedge}+\backslash ; A^{\wedge}$
$-A^{\wedge}+=A^{\wedge}{ }^{*} \backslash\left(A A^{\wedge}\right)^{\wedge}+$.
- Matrix $\backslash A^{\wedge}+A, \backslash ; A \wedge^{\wedge}+-$ is the orthogonal projection-matrices.
-If the matrix $\backslash A _i$ formed from the matrix $\backslash A$ by inserting another zero row / column in the i-th position, then $A _i^{\wedge}+$ will be created with $\backslash A^{\wedge}+$ by adding a zero column / row in the $i-$ th position.

