Answer on Question \#44643 - Math - Linear Algebra:

Let $T: R^{2} \rightarrow R^{2}$ and $S: R^{2} \rightarrow R^{2}$ be linear operators defined by:

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)
$$

$$
S\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+2 x_{2}\right) ;
$$

(a) Find $T \circ S$ and $S \circ T$.
(b) Let $B=\left\{(1,0)^{T},(0,1)^{T}\right\}$ be the standard basis of R^{3}. Verify that $[T \circ S] B=[T] B \circ[S] B$.

Solution.

(a)

$$
\begin{gathered}
(T \circ S)\left(x_{1}, x_{2}\right)=T\left(S\left(x_{1}, x_{2}\right)\right)= \\
=T\left(x_{1}, x_{1}+2 x_{2}\right)=\left(x_{1}+\left(x_{1}+2 x_{2}\right), x_{1}-\left(x_{1}+2 x_{2}\right)\right)=\left(2 x_{1}+2 x_{2},-2 x_{2}\right) ; \\
\quad(S \circ T)\left(x_{1}, x_{2}\right)=S\left(T\left(x_{1}, x_{2}\right)\right)= \\
=S\left(x_{1}+x_{2}, x_{1}-x_{2}\right)=\left(x_{1}+x_{2}, x_{1}+x_{2}+2\left(x_{1}-x_{2}\right)\right)=\left(x_{1}+x_{2}, 3 x_{1}-x_{2}\right) ;
\end{gathered}
$$

(b)

Denote $e_{1}=(0,1)^{T}, e_{2}=(1,0)^{T}$.

$$
T e_{1}=(1+0,1-0)=(1,1)
$$

$$
T e_{2}=(0+1,0-1)=(1,-1)
$$

$$
S e_{1}=(1,1+2 \cdot 0)=(1,1) ;
$$

$$
S e_{2}=(0,0+2 \cdot 1)=(0,2) ;
$$

$$
(T \circ S) e_{1}=(2 \cdot 1+2 \cdot 0,-2 \cdot 0)=(2,0)
$$

$$
(T \circ S) e_{2}=(2 \cdot 0+2 \cdot 1,-2 \cdot 1)=(2,-2)
$$

Hence:

$$
\begin{gathered}
(T \circ S)\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
2 & 2 \\
0 & -2
\end{array}\right)\binom{x_{1}}{x_{2}} ; \\
T\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} ; \\
S\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
1 & 0 \\
1 & 2
\end{array}\right)\binom{x_{1}}{x_{2}} ; \\
{[T] B \circ[S] B=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 1+1 \cdot 1 & 1 \cdot 0+1 \cdot 2 \\
1 \cdot 1+(-1) \cdot 1 & 1 \cdot 0+(-1) \cdot 2
\end{array}\right)=} \\
=\left(\begin{array}{cc}
2 & 2 \\
0 & -2
\end{array}\right)=[T \circ S] B .
\end{gathered}
$$

