Answer on Question \#44642., Math, Linear Algebra

Let v be the vector space of polynomial with real coefficients and of degree at most 2 . If $D=d / d x$ is the differential operator on v and $B=\left\{1+2 x^{\wedge} 2, x+x^{\wedge} 2, x^{\wedge} 2\right\}$ is an ordered basis of V, find $[D] b$. find the rank and nullity of D. Is D invertible? Justify your answer.

Solution

Let $B_{1}=1+2 x^{2}, B_{2}=x+x^{2}, B_{3}=x^{2}$. Then

$$
D B_{1}=\frac{d}{d x}\left(1+2 x^{2}\right)=4 x, D B_{2}=\frac{d}{d x}\left(x+x^{2}\right)=1+2 x, D B_{3}=\frac{d}{d x}\left(x^{2}\right)=2 x
$$

We can see that

$$
\begin{gathered}
D B_{1}=4 B_{2}-4 B_{3} \\
D B_{2}=\left(B_{1}-2 B_{3}\right)+2 B_{2}-2 B_{3}=B_{1}+2 B_{2}-4 B_{3} \\
D B_{3}=2 B_{2}-2 B_{3} .
\end{gathered}
$$

So we get

$$
D\left(\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 4 & -4 \\
1 & 2 & -4 \\
0 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right) .
$$

The differential operator on v with basis $B=\left\{1+2 x^{2}, x+x^{2}, x^{2}\right\}$ expressed by matrix

$$
D=\left(\begin{array}{lll}
0 & 4 & -4 \\
1 & 2 & -4 \\
0 & 2 & -2
\end{array}\right) .
$$

Observe that rows 1 and 3 are linearly dependent, with

$$
\operatorname{row}_{1}(D)=2 \cdot \operatorname{row}_{3}(D)
$$

The rank of D is number of linearly independent rows of D. So

$$
R(D)=2
$$

The nullity of D is

$$
N(D)=3-R(D)=1
$$

The determinant of D is zero, because rows 1 and 3 are linearly dependent. That's why differential operator D is not invertible.

