Answer on Question #44601 – Math - Analytic Geometry

Find the radius of the circular section of the sphere $x^2 + y^2 + z^2 = 49$ by the plane $2x + 3y - z - 5\sqrt{14} = 0$.

Solution:

The centre of the sphere is O(0, 0, 0) and its radius = $OA = \sqrt{49} = 7$ here.

Now ON = perpendicular distance from the centre of the sphere O(0, 0, 0) to the plane $2x + 3y - z - 5\sqrt{14} = 0$. It is fairly clear from linear algebra that:

$$ON = \frac{5\sqrt{14}}{\sqrt{2^2 + 3^2 + (-1)^2}} = 5$$

Then, since we know that the intersection of a plane and a sphere is always a circle, and that this distance is perpendicular to the circle, to find the radius of the circle, we reduce to solving the following:

Radius of circular section from the right triangle applying Pythagoras theorem:

 $ON^{2} + AN^{2} = AO^{2}$ $5^{2} + r^{2} = 7^{2}, \text{ or equivalently:}$ $r = \sqrt{24}$

Answer: $r = \sqrt{24}$

www.AssignmentExpert.com