Answer on Question \#44601 - Math - Analytic Geometry

Find the radius of the circular section of the sphere $x^{2}+y^{2}+z^{2}=49$ by the plane $2 x+3 y-z-5 \sqrt{14}=0$.

Solution:

The centre of the sphere is $O(0,0,0)$ and its radius $=O A=\sqrt{49}=7$ here.
Now $O N=$ perpendicular distance from the centre of the sphere $O(0,0,0)$ to the plane $2 x+3 y-z-5 \sqrt{14}=0$. It is fairly clear from linear algebra that:

$$
\mathrm{ON}=\frac{5 \sqrt{14}}{\sqrt{2^{2}+3^{2}+(-1)^{2}}}=5
$$

Then, since we know that the intersection of a plane and a sphere is always a circle, and that this distance is perpendicular to the circle, to find the radius of the circle, we reduce to solving the following:

Radius of circular section from the right triangle applying Pythagoras theorem:

$$
\begin{gathered}
O N^{2}+A N^{2}=A O^{2} \\
5^{2}+\mathrm{r}^{2}=7^{2} \text {, or equivalently: } \\
\mathrm{r}=\sqrt{24}
\end{gathered}
$$

Answer: $\mathrm{r}=\sqrt{24}$

