## Answer on Question \#44599 - Math - Analytic Geometry

## Problem.

Find the image of the point $(1,6,3)$ in the line
12
123
xy-z-
$==$. Also find the equation of the line
joining the given point and its image.

## Remark.

The statement isn't correctly formatted. I suppose that the correct statement is
"Find the image of the point $(1,6,3)$ in the line

$$
\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}
$$

Also find the equation of the line joining the given point and its image."

## Solution.

Let $A(1,6,3)$ and $l: \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$. Suppose that the perpendicular from $A$ to the line $l$ intersects the line $l$ at $B$ and image of point $A$ is $C$. The equation of the line $l$ can be rewritten, as

$$
\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=t
$$

or $x=t, y=2 t-1, z=3 t-2$ where $t \in \mathbb{R}$.
Therefore point $B$ has coordinates $(k, 2 k+1,3 k+2)$, where $k$ is unknown parameter.
The vector $\overrightarrow{A B}$ has coordinates $(k-1,2 k+1-6,3 k+2-3)=(k-1,2 k-5,3 k-1)$.
The direction vector of the line $l$ has coordinates $(1,2,3)$.
The line $l$ and the line $\overrightarrow{A B}$ are perpendicular, so the inner product of their direction vectors equals 0. Hence

$$
(k-1) \cdot 1+(2 k-5) \cdot 2+(3 k-1) \cdot 3=0
$$

or $k=1$. Therefore $B(1,3,5)$.
The point $C$ is the midpoint of the segment $A B$. If $C$ has coordinates $(x, y, z)$, then $\frac{x+1}{2}=1, \frac{y+6}{2}=$ $3, \frac{z+3}{2}=5$ or $x=1, y=0, z=7 . C(1,0,7)$.
The vector $\overrightarrow{A C}$ has coordinates $(1-1,0-6,7-3)=(0,-6,4)$.
The equation of line $A C$ is $x=1, y=-6 t+6, z=4 t+3$, where $t \in \mathbb{R}$.
Answer: $(1,0,7), x=1, y=-6 t+6, z=4 t+3$, where $t \in \mathbb{R}$.

