Answer on Question \#44598 - Math - Other

(1)A window is in the form of rectangle surmounted by a semi-circle. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.

Solution:

We start to solve with given data. We know that a window in the shape described above to have a maximum area (and hence let in the most light) and have a perimeter of 10 m .

It also should be noted the reasonable assumption that the maximum amount of light would be admitted by the maximum area window.

Represent the sketch of the window below.

Let y or h represent the measure of the vertical dimension of the rectangular portion of the window. Let x represent the horizontal dimension of the window. The value of x is also the diameter of the semi-circular part of the window so we can write that $\mathrm{x}=2 \mathrm{r}$.

Then the perimeter of the window will be equal:

$$
P(x, y)=2 y+x+\frac{\pi x}{2}
$$

We know that the total perimeter of the window is equal to 10 meters. So, we can substitute the value of perimeter into the given formula:

$$
2 y+x+\frac{\pi x}{2}=10
$$

Now we can solve for y.

$$
2 y=10-x-\frac{\pi x}{2}
$$

Divide both sides of the equation by 2 and simplify the equation.

$$
y=5-\frac{x}{2}-\frac{\pi x}{4}
$$

$$
y=5-\frac{(\pi+2) x}{4}
$$

The area of the window is consisting of area semicircle and area of rectangle. So, we can write the formula for determination the area of the given window.

$$
A(x, y)=x y+\frac{\pi \frac{x^{2}}{2}}{2}
$$

Then we substitute y to create a function for area in terms of x.

$$
A(x, y)=x\left(5-\frac{(\pi+2) x}{4}\right)+\frac{\pi \frac{x^{2}}{2}}{2}
$$

Simplify the equation.

$$
A(x, y)=5 x-\frac{(\pi+2) x^{2}}{4}+\frac{\pi \frac{x^{2}}{2}}{2}
$$

Finally simplify the value of Area.

$$
A(x, y)=5 x-\frac{(4+\pi)}{8} x^{2}
$$

Then we can apply two methods of solution. First implies the solution by consideration the quadratic equation or algebraically solve equation.

So, in our case we have a quadratic with a negative lead coefficient, hence the graph is a parabola that opens downward. That means the vertex is a maximum. It should also be noted that the vertex of $p(x)=a x^{2}+b x+c$ is at $x_{v}=-\frac{b}{2 a}$.

Applying this rule for our problem we can find the value of x_{v}.

$$
x_{\max }=-\frac{b}{2 a}=\frac{-5}{-2\left(\frac{(4+\pi)}{8}\right)}=\frac{5}{\frac{(4+\pi)}{4}}=\frac{20}{4+\pi} \approx 2.801 \text { meter. }
$$

Now we can find the value of y. We have the formula for $y=5-\frac{(\pi+2) x}{4}$, so we can substitute the value of x .

$$
\begin{gathered}
y=5-\frac{(\pi+2)}{4} \frac{20}{(4+\pi)} \\
y_{\max }=\frac{5(\pi+2)}{(4+\pi)} \approx 3.599 \text { meter. }
\end{gathered}
$$

Then find the radius of the semi-circle is then:

$$
\frac{x_{\max }}{2}=\frac{10}{4+\pi} \approx 1.401 \text { meter } .
$$

Now we can consider another method of solution. We have a second degree polynomial equation, hence continuous and twice differentiable over the real numbers. Therefore there will be a local extremum at any point where the first derivative is equal to zero and that point will be a maximum if the second derivative is negative at that point.

$$
\begin{gathered}
\frac{d A}{d x}=5-\frac{(4+\pi)}{4} \mathrm{x} \\
\frac{d A}{d x}=0 \\
5-\frac{(4+\pi)}{4} \mathrm{x}=0
\end{gathered}
$$

Simplify by solving for x.

$$
-\frac{(4+\pi)}{4} x=-5
$$

Multiply both sides of the equation by -4 .

$$
(4+\pi) x=20
$$

The value of x will be equal.

$$
x=\frac{20}{4+\pi}
$$

Then we find the second derivative.

$$
\frac{d^{2} A}{d x^{2}}=-\frac{(4+\pi)}{4}<0
$$

Hence value of x is equal to $\mathrm{x}=\frac{20}{4+\pi}$ and the -coordinate of the maximum point.
The y dimension and the semi-circle radius are calculated as above.
Answer: The dimensions of the window to admit maximum light through the whole opening will be the horizontal dimension of the window $x_{\max }=\frac{20}{4+\pi} \approx 2.801$ meter, radius of the semi-circle $\frac{x_{\max }}{2}=\frac{10}{4+\pi} \approx 1.401$ meter and the measure of the vertical dimension of the rectangular portion $\mathrm{y}_{\text {max }}=\frac{5(\pi+2)}{(4+\pi)} \approx 3.599$ meter.

