Answer on Question \#44582 - Math - Calculus

If we consider the expression 1/2-3x
as a function on R, what will be its domain and range? Will it have an inverse? Justify your answer.

Solution.

$f(x)=\frac{1}{2-3 x}$,
The domain is all real numbers except those when denominator $=0$, i.e. $2-3 x=0 \rightarrow$ $x=\frac{2}{3}$

Domain: all $x \in R$, except $x=\frac{2}{3}$ or $\left\{-\infty<x<\frac{2}{3}\right\} \cup\left\{\frac{2}{3}<x<\infty\right\}$,
The range is all real numbers except 0 because a fraction is 0 only when its numerator is 0 , and in this case its numerator is never 0 .

Range: $\{-\infty<\boldsymbol{f}(\boldsymbol{x})<\mathbf{0}\} \cup\{\mathbf{0}<\boldsymbol{f}(\boldsymbol{x})<\infty\}$,
To find the inverse function, we will do the next steps:

- write the function as an equation $y=\frac{1}{2-3 x}$.
- solve for $\mathrm{x}: x=\frac{2 y-1}{3 y}$
- now write $f^{-1}(y)$ as follows $f^{-1}(y)=\frac{2 y-1}{3 y}$ or $f^{-1}(x)=\frac{2 x-1}{3 x}$.
- check: $f\left(f^{-1}(x)\right)=\frac{1}{2-3 \frac{2 x-1}{3 x}}=\frac{x}{2 x-(2 x-1)}=x$.

Inverse function: $g(x)=f^{-1}(x)=\frac{2 x-1}{3 x}$.

