Answer on Question \#44581 - Math - Calculus

Question 1. Which of the following functions are 1-1 and which are onto? Justify your answer.

1. $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=x^{2}$ where $\mathbb{R}_{\geq 0}$ is the set $\{x \in \mathbb{R} \mid x \geq 0\}$;
2. $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}+x+1$.

Solution. (i) We have $\mathrm{f}(-1)=\mathrm{f}(1)=1$, so f is not $1-1$. For any $\mathrm{y} \in \mathbb{R}_{\geq 0}$, since $\mathrm{y} \geq 0$, there exists $\mathrm{x}=\sqrt{y}$ such that $\mathrm{f}(\mathrm{x})=(\sqrt{y})^{2}=y$. Thus, f is onto.
(ii) We have $\mathrm{f}(0)=\mathrm{f}(-1)=1$, so f is not $1-1$. Observe that

$$
f(x)=x^{2}+x+1=x^{2}+2(1 / 2) x+1 / 4+3 / 4=(x+1 / 2)^{2}+3 / 4 \geq 3 / 4
$$

In particular, there is no $\mathrm{x} \in \mathbb{R}$, such that $\mathrm{f}(\mathrm{x})=0$. Thus, f is not onto.

Answer:

1. f is not $1-1$, but onto;
2. f is neither $1-1$, nor onto.
