Answer on Question \#44550 - Math - Calculus

A fixed Circle C1 with equation $(x-1)^{\wedge} 2+y^{\wedge} 2=1$ and a shrinking circle C2 with radius r and center the origin. P is the point ($0, r$), Q is the upper point of intersection of the two circles, and R is the point of intersection of the line $P Q$ and the x-axis. what happense to R as $C 2$ shrinks, that is, as $r-->0^{\wedge}+$?

Answer.

To find x-coordinate of point Q we should solve the equation:

$$
1-(1-x)^{2}=r^{2}-x^{2} \rightarrow 2 x=r^{2} \rightarrow x=\frac{r^{2}}{2}
$$

x-coordinate of point Q: $y=\sqrt{r^{2}-\left(\frac{r^{2}}{2}\right)^{2}}=\frac{r}{2} \sqrt{4-r^{2}}$.
So, the equation of line through points $P(0, r)$ and $Q\left(\frac{r^{2}}{2}, \frac{r}{2} \sqrt{4-r^{2}}\right)$:
$y-r=\frac{r-\frac{r}{2} \sqrt{4-r^{2}}}{0-\frac{r^{2}}{2}}(x-0) \rightarrow y=-\frac{2-\sqrt{4-r^{2}}}{r} x+r$.
The point of intersection of our line and x -axis: $\mathbf{0}=-\frac{2-\sqrt{4-r^{2}}}{r} \boldsymbol{x}+\boldsymbol{r} \rightarrow \boldsymbol{x}=\frac{r^{2}}{2-\sqrt{4-r^{2}}}$
When $r \rightarrow 0^{+}, x=\lim _{r \rightarrow 0^{+}} \frac{r^{2}}{2-\sqrt{4-r^{2}}}=\lim _{r \rightarrow 0^{+}} \frac{r^{2}}{2-2\left(1-\frac{r^{2}}{8}\right)}=4$.
l.e., when $r \rightarrow \mathbf{0}^{+} R \rightarrow 4$.

www.AssignmentExpert.com

