Answer on Question \#44546 - Math - Algebra

Problem.

Prove that if A and B are any two sets such that $A \subseteq B$, then $A \cup B=B$
i) by direct method;
ii) by proving its contrapositive;
iii) by contradiction.

Solution.

i) If $x \in A \cup B$, then $x \in A$ or $x \in B$. Hence $x \in B$, as $A \subseteq B$. Therefore $A \cup B \subseteq B$. If $x \in B$, then $x \in A \cup B$ (because $\mathrm{A} \subseteq \mathrm{B}$). Therefore $B \subseteq A \cup B$.
Since $A \cup B=B$, as $A \cup B \subseteq B$ and $B \subseteq A \cup B$.
ii) We need to prove that if $A \cup B \neq B$, then $A \nsubseteq B$.

If $A \cup B \neq B$, then there exists $x \in A$ such that $x \notin B$. Therefore $A \nsubseteq B$.
iii) Suppose that $A \subseteq B$ and $A \cup B \neq B$. If $A \cup B \neq B$, then there exists $x \in A$ such that $x \notin B$. Therefore $A \nsubseteq B$. We obtain a contradiction with assumption $A \subseteq B$.

