Problem.

Use De Moivre's theorem to obtain the 6th roots of i5 - 1. Also show them in an Argand diagram

Solution. If z = -1 + 5i, then $|z| = \sqrt{1^2 + 5^2} = \sqrt{26}$. Therefore $z = \sqrt{26} \left(-\frac{1}{\sqrt{26}} + \frac{5}{\sqrt{26}}i \right)$. We need to find $\varphi \in (-\pi; \pi]$ such that $\cos \varphi = -\frac{1}{\sqrt{26}}$ and $\sin \varphi = \frac{5}{\sqrt{26}}$. Therefore $\frac{\pi}{2} < \varphi < \pi$ and $\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = -5$. Hence $\varphi = -\arctan 5 + \pi$, as $-\frac{\pi}{2} < -\arctan 5 < 0$. By De Moivre's theorem the 6th roots are $z_{i} = \sqrt[12]{26} \left(\cos \frac{-\arctan 5 + \pi + 2\pi k}{6} + i \sin \frac{-\arctan 5 + \pi + 2\pi k}{6} \right),$ where k = 0, 1, 2, 3, 4, 5..

The Argand diagram:

www.AssignmentExpert.com