## Answer on Question \#44537 - Math - Complex Analysis

## Problem.

Use De Moivre's theorem to obtain the 6th roots of i5-1. Also show them in an Argand diagram

## Solution.

If $z=-1+5 i$, then $|z|=\sqrt{1^{2}+5^{2}}=\sqrt{26}$.
Therefore $z=\sqrt{26}\left(-\frac{1}{\sqrt{26}}+\frac{5}{\sqrt{26}} i\right)$. We need to find $\varphi \in(-\pi ; \pi]$ such that $\cos \varphi=-\frac{1}{\sqrt{26}}$ and $\sin \varphi=\frac{5}{\sqrt{26}}$. Therefore $\frac{\pi}{2}<\varphi<\pi$ and $\tan \varphi=\frac{\sin \varphi}{\cos \varphi}=-5$. Hence $\varphi=-\arctan 5+\pi$, as $-\frac{\pi}{2}<-\arctan 5<0$. By De Moivre's theorem the 6 th roots are

$$
z_{i}=\sqrt[12]{26}\left(\cos \frac{-\arctan 5+\pi+2 \pi k}{6}+i \sin \frac{-\arctan 5+\pi+2 \pi k}{6}\right)
$$

where $k=0,1,2,3,4,5$..
The Argand diagram:


Answer:

$$
z_{i}=\sqrt[12]{26}\left(\cos \frac{-\arctan 5+\pi+2 \pi k}{6}+i \sin \frac{-\arctan 5+\pi+2 \pi k}{6}\right)
$$

where $k=0,1,2,3,4,5$.

