Answer on Question #44529 - Math - Abstract Algebra

Problem.

Factorise 10 in two ways in Z[p]

Solution.

We suppose that p > 10, as there are no elements with residue 10 in $\mathbb{Z}[p]$, when $p \le 10$. $10 = 2 \cdot 5$, $10 = -2 \cdot -5$ in \mathbb{Z} . To find two different factorization of 10 in $\mathbb{Z}[p]$ we should replace -5, -2, 2, 5 and 10 with their residue by modulo p. We will obtain that $10 \equiv 2 \cdot 5 \pmod{p}$ and $10 \equiv (p-2) \cdot (p-5) \pmod{p}$. $2 \not\equiv p - 2 \pmod{p}$, $5 \not\equiv p - 5 \pmod{p}$, $2 \not\equiv p - 5 \pmod{p}$, $5 \not\equiv p - 2 \pmod{p}$, as p > 10. **Answer:** $10 \equiv 2 \cdot 5 \pmod{p}$ and $10 \equiv (p-2) \cdot (p-5) \pmod{p}$.