Problem.

Factorise 10 in two ways in Z[p]

Solution.

We suppose that $p>10$, as there are no elements with residue 10 in $\mathbb{Z}[p]$, when $p \leq 10$. $10=2 \cdot 5,10=-2 \cdot-5$ in \mathbb{Z}. To find two different factorization of 10 in $\mathbb{Z}[p]$ we should replace $-5,-2,2,5$ and 10 with their residue by modulo p. We will obtain that $10 \equiv 2 \cdot 5(\bmod p)$ and $10 \equiv(p-2) \cdot(p-5)(\bmod p)$.
$2 \not \equiv p-2(\bmod p), 5 \not \equiv p-5(\bmod p), 2 \not \equiv p-5(\bmod p), 5 \not \equiv p-2(\bmod p)$, as $p>10$.
Answer: $10 \equiv 2 \cdot 5(\bmod p)$ and $10 \equiv(p-2) \cdot(p-5)(\bmod p)$.

