## Answer on Question \#44527 - Math - Abstract Algebra:

Find two different Sylow 2-subgroups of $D_{12}$.

## Solution.

$$
\left|D_{12}\right|=2 \cdot 12=24=2^{3} \cdot 3 ;
$$

So, if $M, N$ are Sylow 2 -subgroups, then $|M|=|N|=2^{3}=8$.
Note that $D_{n}$ has the following representation:

$$
D_{n}=<x, y \mid x^{n}=y^{2}=e, x y=y x^{-1}>;
$$

So:

$$
\begin{gathered}
D_{12}=\left\{e, x, x^{2}, \ldots, x^{11}, y, x y, x^{2} y, \ldots x^{11} y\right\} ; \\
\forall i=0, \ldots, 11: x^{i} y=x^{i-1} \cdot y x^{-1}=\cdots=y x^{-i} ; \\
\forall i, j=0, \ldots, 11: x^{i} y \cdot x^{j} y=x^{i} y \cdot y x^{-j}=x^{i-j} ;
\end{gathered}
$$

Consider the following subgroups:

$$
\begin{gathered}
M=\left\{e, x^{3}, x^{6}, x^{9}, y, x^{3} y, x^{6} y, x^{9} y\right\} \\
N=\left\{e, x^{3}, x^{6}, x^{9}, x y, x^{4} y, x^{7} y, x^{10} y\right\}
\end{gathered}
$$

$|M|=|N|=8$, so $M$ and $N$ are Sylow 2-subgroups of $D_{12}$. Note that the group $C_{4}=$ $\left\{e, x^{3}, x^{6}, x^{9}\right\}$ is a subgroup of index 2 of $M$ and $N$. Hence, $M \cong N \cong C_{4} \times C_{2}$.

