Answer on Question \#44524 - Math - Other

Problem.

Which of the following statements are true? Give reasons for your answers. (This means that if you think a statement is false, give a short proof or an example that shows it is false. If it is true, give a short proof for saying so. For instance, to show that '\{1, padma, blue\}is a set' is true, you need to say that this is true because it is a well-defined collection of 3 objects.)
i) $\{$ MTE-04, -3 , Indira Gandhi $\}$ is a set.
ii) For any two sets A and $B, A \cup B c=A \cap B$.
iii) There is a unique $z \in C$ for which $z z 1-=$.
iv) The least degree of the polynomial with real coefficients and with roots $2+i, 2 i-1$ is 2 .
v) If a statement has a direct proof, then it cannot be proved by contradiction.
vi) The equation $x=3$ has the same geometric representation regardless of whether it is an equation in one variable or two variables.
vii) Any system of n linear equations in $n-1$ variables has a solution.
viii) The CS inequality is a generalization of the triangle inequality.

Remark.

The statement isn't correctly formatted. I suppose that the correct statement is
"Which of the following statements are true? Give reasons for your answers. (This means that if you think a statement is false, give a short proof or an example that shows it is false. If it is true, give a short proof for saying so. For instance, to show that ' $\{1$, padma, blue\}is a set' is true, you need to say that this is true because it is a well-defined collection of 3 objects.)
i) $\{$ MTE-04, -3 , Indira Gandhi $\}$ is a set.
ii) For any two sets A and $B, A \cup B^{c}=A \cap B . A \cup B^{C}$
iii) There is a unique $z \in \mathbb{C}$ for which $|\bar{z}|=\left|z^{-1}\right|$.
iv) The least degree of the polynomial with real coefficients and with roots $2+i, 2 i-1$ is 2 .
v) If a statement has a direct proof, then it cannot be proved by contradiction.
vi) The equation $x=3$ has the same geometric representation regardless of whether it is an equation in one variable or two variables.
vii) Any system of n linear equations in $n-1$ variables has a solution.
viii) The CS inequality is a generalization of the triangle inequality. "

Solution.

i) True
\{MTE-04, -3, Indira Gandhi\} is a set, as it is a well-defined collection of 3 objects.
ii) False

Suppose that $A=[0 ; 1]$ and $B=[-2 ;-1]$ are subsets of universe $U=\mathbb{R}$. Then $B^{c}=(-\infty ;-2) \cup(-1 ;+\infty), A \cup B^{c}=(-\infty ;-2) \cup(-1 ;+\infty)$, but $A \cap B=\emptyset$.
iii) False

There are at least two such numbers, as $|\overline{1}|=\left|1^{-1}\right|$ and $|\overline{-1}|=\left|(-1)^{-1}\right|$.
iv) False

If $a+i b$ is the root of polynomial with real coefficients $p(x)$, then $a-i b$ is the root of polynomial $p(x)$. Hence polynomial with roots $2+i, 2 i-1$ has also root $2-i$ and $-1-2 i$. Therefore it has degree at least 4.

v) True

If suppose that statement is incorrect, then from direct proof we will obtain a contradiction.
vi) False

If $x=3$ is an equation in one variable, then its geometric representation is point. If $x=3$ is an equation in two variables, then its geometric representation is line.
vii) False

The system $\left\{\begin{array}{l}x+y=1 \\ x+y=2 \text { doesn't have solution. } x+y \text { couldn't be equal to } 1 \text { and } 2 \text { at one time. } \\ x-y=0\end{array}\right.$
viii) False

CS inequality and triangle inequalities are equivalent in Hilbert spaces (like \mathbb{R}^{n} with standard metric), but the inner product isn't defined in all metric spaces.

