Answer on Question \#44494 - Math - Statistics and Probability

A bag contains two red balls, three blue balls and five green balls. Three balls are drawn at random. Find the probability that:
a) three balls are of different colours;
b) two balls are of the same colour;
c) all the three are of the same colour.

Solution.

a)

$$
P(\text { three balls are of different colours })=\frac{M}{N},
$$

M is the number of ways to select 1 red ball, 1 blue ball and 1 green ball, N is the number of ways to select 3 balls from the set of 10 balls;
So:

$$
\begin{gathered}
M=\binom{2}{1}\binom{3}{1}\binom{5}{1}=2 \cdot 3 \cdot 5=30 \\
N=\binom{10}{3}=\frac{10!}{3!7!}=\frac{8 \cdot 9 \cdot 10}{6}=8 \cdot 3 \cdot 5=120 \\
P \text { (three balls are of different colours) }=\frac{30}{120}=0.25
\end{gathered}
$$

b)
$P($ two balls are of the same colour $)=$
$=P(2$ balls are red and 1 isn't red $)+P(2$ balls are blue and 1 isn't blue $)+$

$$
+P(2 \text { balls are green and } 1 \text { isn't green })=\frac{P+Q+R}{N}
$$

P is the number to select 2 red balls and 1 ball which is not red, Q is the number to select 2 blue balls and 1 ball which is not blue, R is the number to select 2 green balls and 1 ball which is not green, N is the same as in (a);
So:

$$
\begin{gathered}
P=\binom{2}{2}\binom{8}{1}=1 \cdot 8=8 \\
Q=\binom{3}{2}\binom{7}{1}=3 \cdot 7=21 \\
R=\binom{5}{2}\binom{5}{1}=\frac{5!}{2!3!} \cdot 5=10 \cdot 5=50
\end{gathered}
$$

$P($ two balls are of the same colour $)=\frac{8+21+50}{120}=\frac{79}{120}$.
c)

Note that $P(3$ balls are red $)=0$.
$P($ all the three are of the same colour $)=$
$=P(3$ balls are red $)+P(3$ balls are blue $)+P(3$ balls are green $)=0+\frac{S+T}{N}$,
S is the number of ways to select 3 blue balls,
T is the number of ways to select 3 green balls,
N is the same as in (a);
So:

$$
\begin{gathered}
S=\binom{3}{3}=1 ; \\
T=\binom{5}{3}=\frac{5!}{3!2!}=10 ; \\
P \text { (all the three are of the same colour) }=\frac{1+10}{120}=\frac{11}{120} .
\end{gathered}
$$

