Answer on Question \#44466-Math - Algorithms | Quantitative Methods

If 7000 dollars is invested in a bank account at an interest rate of 7 percent per year, compounded continuously. How many years will it take for your balance to reach 10000 dollars?

Firstly, we have to "translate" this problem into mathematical language. A certain amount was invested at an interest rate means that annually bank gives his client a certain amount of money as a payment for the ability to use initial amount in financial operations. That means that an amount of money increases as some function

$$
M(t+\Delta t)=f(M(t))
$$

It's known that $M(0)$ (initial amount of money) equals to 7000 . Let v be a fixed value of years, which provides an increasing of initial amount to the value of 10000 .

The fact that bank pays annually 7 percents means that

$$
M(t+1)=M(t) \cdot\left(1+\frac{7}{100}\right)
$$

We know that percents are compounded continuously:

$$
M(v)=M(0) \cdot\left(1+\frac{7}{100}\right)^{v}
$$

According to the known data,

$$
M(v)=10000, \quad M(0)=7000
$$

we have to solve an equation

$$
\begin{gathered}
10000=7000 \cdot 1.07^{v} \\
\frac{10}{7}=1.07^{v} \\
v=\log _{1.07} \frac{10}{7}
\end{gathered}
$$

