Answer on Question \#44456 - Math - Abstract Algebra

Problem.

Let $s=1234567$
245673 1and t = 1234567
324165 7be elements of S7.
i) Write both s and t as product of disjoint cycles and as a product of transpositions,
ii) Find the signatures of s and t.
iii) Compute ts-2 and t2s2.

Remark.

The statement isn't correctly formatted. I suppose that the correct statement is "Let $\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 6 & 7 & 3 & 1\end{array}\right)$ and $\tau=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 6 & 5 & 7\end{array}\right)$ be elements of S_{7} :
i) Write both σ and τ as product of disjoint cycles and as a product of transpositions.
ii) Find the signatures of σ and τ.
iii) Compute $\tau \sigma^{-2}$ and $\tau^{2} \sigma^{2}$."

Solution.

i) $\quad \sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 6 & 7 & 3 & 1\end{array}\right)=(1246357)=(12)(24)(46)(63)(35)(57)$;

$$
\tau=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 2 & 4 & 1 & 6 & 5 & 7
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6
\end{array}\right)
$$

ii) $\operatorname{sgn}(\sigma)=(-1)^{6}=1$ and $\operatorname{sgn}(\tau \tau)=(-1)^{3}=1$.
iii) $\sigma^{-2}=\left(\sigma^{-1}\right)^{2}=((1753642))^{2}=(1562734)$.

Therefore $\tau \sigma^{-2}=(13)(34)(56)(1562734)=(162743)$.
$\sigma^{2}=(1246357)^{2}=(1437265)$ and $\tau=((13)(34)(56))^{2}=e$.
Therefore $\tau^{2} \sigma^{2}=(1437265)$.

