Answer on Question #44456 - Math - Abstract Algebra

Problem.

Let s = 1 2 3 4 5 6 7

2 4 5 6 7 3 1and t = 1 2 3 4 5 6 7

3 2 4 1 6 5 7be elements of S7.

- i) Write both s and t as product of disjoint cycles and as a product of transpositions,
- ii) Find the signatures of s and t.
- iii) Compute ts-2 and t2s2.

Remark.

The statement isn't correctly formatted. I suppose that the correct statement is

"Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 6 & 7 & 3 & 1 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 6 & 5 & 7 \end{pmatrix}$ be elements of S_7 :

- i) Write both σ and τ as product of disjoint cycles and as a product of transpositions.
- ii) Find the signatures of σ and τ .
- iii) Compute $\tau\sigma^{-2}$ and $\tau^2\sigma^2$."

i)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 6 & 7 & 3 & 1 \end{pmatrix} = (1\ 2\ 4\ 6\ 3\ 5\ 7) = (1\ 2)(2\ 4)(4\ 6)(6\ 3)(3\ 5)(5\ 7);$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 6 & 5 & 7 \end{pmatrix} = (1\ 3\ 4)(5\ 6) = (1\ 3)(3\ 4)(5\ 6);$$
ii) $\operatorname{sgn}(\sigma) = (-1)^6 = 1$ and $\operatorname{sgn}(\tau\tau) = (-1)^3 = 1$.

ii)
$$sgn(\sigma) = (-1)^6 = 1$$
 and $sgn(\tau\tau) = (-1)^3 = 1$

iii)
$$\sigma^{-2} = (\sigma^{-1})^2 = ((1753642))^2 = (1562734).$$

Therefore $\tau \sigma^{-2} = (1\ 3)(3\ 4)(5\ 6)(1\ 5\ 6\ 2\ 7\ 3\ 4) = (1\ 6\ 2\ 7\ 4\ 3).$

$$\sigma^2 = (1\ 2\ 4\ 6\ 3\ 5\ 7)^2 = (1\ 4\ 3\ 7\ 2\ 6\ 5)$$
 and $\tau = \big((1\ 3)(3\ 4)(5\ 6)\big)^2 = e$.

Therefore $\tau^2 \sigma^2 = (1437265)$.