Answer on Question \#44429 - Math - Algebra

Question.

When Johnny bikes with a tail wind, it takes him 1 hour to travel 15 km . He makes the return trip against the wind in $11 / 2$ hours. What is Johnny's speed on a windless day and what is the speed of the wind?

Given:
$l=15 \mathrm{~km}$
$t_{1}=1 h ; t_{2}=1.5 h$

Find:
$v_{\text {bike }}=? v_{\text {wind }}=?$

Solution.

As we know from the kinematics basis:

$$
v=\frac{l}{t}, \text { where }
$$

v is the speed of the object; l is the travelled distance; t is the time.

We can compose the following system of equations:
$\left\{\begin{array}{l}v_{\text {bike }}+v_{\text {wind }}=\frac{l}{t_{1}} \\ v_{\text {bike }}-v_{\text {wind }}=\frac{l}{t_{2}}\end{array}\right.$, where
$v_{\text {bike }}$ is the Johnny's speed;
$v_{\text {wind }}$ is the speed of the wind.

So,

$$
\left\{\begin{array} { l }
{ v _ { \text { bike } } + v _ { \text { wind } } = \frac { 1 5 } { 1 } = 1 5 } \\
{ v _ { \text { bike } } - v _ { \text { wind } } = \frac { 1 5 } { 1 . 5 } = 1 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ 2 v _ { \text { bike } } = 2 5 } \\
{ 2 v _ { \text { wind } } = 5 }
\end{array} \rightarrow \left\{\begin{array}{l}
v_{\text {bike }}=12.5 \frac{\mathrm{~km}}{\mathrm{~h}} \\
v_{\text {wind }}=2.5 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{array}\right.\right.\right.
$$

Answer. $v_{\text {bike }}=12.5 \frac{\mathrm{~km}}{\mathrm{~h}} ; v_{\text {wind }}=2.5 \frac{\mathrm{~km}}{\mathrm{~h}}$

