Answer on Question \#44423 - Math - Geometry

(1)Using Coordinate geometry prove that angle in a semi circle is a right angle

Solution:

Consider the following diagram:

Without loss of generality, we have chosen a unit semicircle whose center is at the origin.

Point P is $(x, y)=\left(x, \sqrt{1-x^{2}}\right)$
The slope of line segment A is:

$$
m_{A}=\frac{\sqrt{1-x^{2}}-0}{x-(-1)}=\frac{\sqrt{1-x^{2}}}{1+x}=\sqrt{\frac{1-x}{1+x}}
$$

The slope of line segment B is:

$$
m_{B}=\frac{\sqrt{1-x^{2}}-0}{x-1}=-\frac{\sqrt{1-x^{2}}}{1+x}=-\sqrt{\frac{1+x}{1-x}}
$$

Two lines are perpendicular if the prodict of their slopes is $\mathbf{- 1}$.

$$
\mathrm{m}_{\mathrm{A}} \cdot \mathrm{~m}_{\mathrm{B}}=-\sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}} \cdot \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}
$$

Thus, we know line segments A and B are perpendicular, and so the triangle is a right triangle.

