Answer on Question \#44413 - Math - Algebra

1. A largest possible cylinder will be removed from a cube of edge (4x) cm. Express the volume of the remaining solid as product of two polynomials.
2. The radius of th circular base of a cone is ($3 x-2$) meters. If its slant height is $\left(9 x^{\wedge} 2-6 x\right)$ meters, express the cone's surface area as a product of polynomials in x.

Solution:

1. We have such drawing :

Edge of cube is equal 4 xcm . The volume of the remaining solid (cube without cylinder) is equal to volume of cube subtract volume of cylinder.

For a cube of edge with length a, volume is equal to a^{3}. For right circular cylinder, i.e., the cylinder with the generating lines perpendicular to the bases, with its ends closed to form two circular surfaces, as in the figure, we have, If the cylinder has a radius r and length (height) h, then its volume is given by

$$
\mathrm{V}=\pi r^{2} \mathrm{~h} .
$$

For our cylinder we have $r=\frac{4 x}{2}=2 x$ (half edges of a cube) and $h=4 x$ (equal edges of a cube). Hence $V_{\text {cube }}=(4 x)^{3}=64 x^{3}\left(\mathrm{~cm}^{3}\right)$ and $V_{\text {cylinder }}=\pi(2 x)^{2} 4 x=16 \pi x^{3}\left(\mathrm{~cm}^{3}\right)$. Therefore volume of the remaining solid $V_{\text {rem.solid }}=64 x^{3}-16 \pi x^{3}=16 x^{3}(4-\pi)\left(\mathrm{cm}^{3}\right)$

Answer: $V_{\text {rem.solid }}=16 x^{3}(4-\pi)\left(\mathrm{cm}^{3}\right)($ it is product of two polynomial of x : thihrd and nill deqrees)
2. We have drawing:

The lateral surface area of a right circular cone is $L S A=\pi r l$ where r is the radius of the circle at the bottom of the cone and l is the slant height of the cone (given by the Pythagorean theorem
$l=\sqrt{h^{2}+r^{2}}$ where h is the height of the cone). The surface area of the bottom circle of a cone is the same as for any circle, πr^{2}. Thus the total surface area of a right circular cone is:
$S A=\pi r^{2}+\pi r l=\pi r(r+l)$.
We hawe $r=3 x-2$ and $l=9 x^{2}-6 x$. Hence $\mathrm{h}=$
$\sqrt{\left(9 x^{2}-6 x\right)^{2}-(3 x-2)^{2}}=\sqrt{81 x^{4}-108 x^{3}+27 x^{2}+12 x-4}$.
Therefore answer
$S A=\pi r(r+l)=\pi(3 x-2)\left(3 x-2+\sqrt{81 x^{4}-108 x^{3}+27 x^{2}+12 x-4}\right)$.
P. S.:

I assume in the task mistake, because

$$
\pi(3 x-2)\left(3 x-2+\sqrt{81 x^{4}-108 x^{3}+27 x^{2}+12 x-4}\right)
$$

is not a product of polynomials in x .
Maybe in the task was meant to find lateral surface area of cone $L S A=\pi r l$. If that true, then
$L S A=\pi(3 x-2)\left(9 x^{2}-6 x\right)=3 \pi x\left(9 x^{2}-12 x+4\right)$ is a product of polynomials in x .

Remark: when writing "cone's surface area " in most cases it's mean, total surface area.

