Answer on Question\# \#44404 - Math - Real Analysis

Question:

Determine if the series is absolutely convergent, conditionally convergent or divergent.

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{\sin \left(\frac{(2 m+1) \pi}{2}\right)}{m+1} \ln (m+1) \tag{1}
\end{equation*}
$$

Solution:

Let's simplify the expression $\sin \left(\frac{(2 m+1) \pi}{2}\right)$ in (1):

$$
\sin \left(\frac{(2 m+1) \pi}{2}\right)=\sin \left(\frac{\pi}{2}+\pi m\right)=\sin \left(\frac{\pi}{2}\right) \cos (\pi m)+\cos \left(\frac{\pi}{2}\right) \sin (\pi m)=\cos (\pi m)=(-1)^{\mathrm{m}}
$$

Then series (1) can be rewritten as

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m+1} \ln (m+1) \tag{1a}
\end{equation*}
$$

As we see, the series (1) is alternating series. By definition, the alternating series $\sum_{m=1}^{\infty} a_{m}$ converges absolutely if the series $\sum_{m=1}^{\infty}\left|a_{m}\right|$ converges. A series converges conditionally if it converges but does not converge absolutely.

The series (1a) by the Leibniz test is convergent, as $\lim _{m \rightarrow \infty} \frac{\ln (m+1)}{m+1}=0$. Let's compose the absolute value series

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{\ln (m+1)}{m+1} \tag{2}
\end{equation*}
$$

To determine, whether the series (2) converges or diverges, we use the comparison test. Let's consider following series

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{1}{m} \tag{3}
\end{equation*}
$$

For all $m \geq 4$ inequality $\frac{\ln (m+1)}{m+1}>\frac{1}{m}$ takes place. The series (3) is the harmonic series, which diverges. Therefore, the absolute value series (2) diverges by comparison.

Hence, the original series is conditionally convergent.
Answer: The series $\sum_{m=1}^{\infty} \frac{\sin \left(\frac{(2 m+1) \pi}{2}\right)}{m+1} \ln (m+1)$ is conditionally convergent.

