Answer on Question \#44402 - Math - Analytic Geometry

Find n so that vectors $2 i+3 j-2 k, 5 i+n j+k$ and $-i+2 j+3 k$ may be coplanar

Solution:

$\mathrm{a}=<2,3,-2>$
$\mathrm{b}=\langle 5, \mathrm{n}, 1>$
$\mathrm{c}=\langle-1,2,3\rangle$
Vectors are coplanar if and only if the cross product of two is perpendicular to the third, i.e. if and only if

$$
(\mathrm{a} \times \mathrm{b}) \cdot \mathrm{c}=0 .
$$

This is the scalar triple product, which is basically equivalent to taking a determinant. Performing this computation, we get:

$$
\begin{gathered}
\mathrm{a} \times \mathrm{b}=<\mathrm{a}_{\mathrm{y}} \mathrm{~b}_{\mathrm{z}}-\mathrm{a}_{\mathrm{z}} \mathrm{~b}_{\mathrm{y}}, \mathrm{a}_{\mathrm{z}} \mathrm{~b}_{\mathrm{x}}-\mathrm{a}_{\mathrm{x}} \mathrm{~b}_{\mathrm{z}}, \mathrm{a}_{\mathrm{x}} \mathrm{~b}_{\mathrm{y}}-\mathrm{a}_{\mathrm{y}} \mathrm{~b}_{\mathrm{x}}>= \\
=<3 \cdot 1+2 \cdot \mathrm{n},-2 \cdot 5-2 \cdot 1,2 \cdot \mathrm{n}-3 \cdot 5>=<3+2 \mathrm{n},-12,-15+2 \mathrm{n}> \\
(\mathrm{a} \times \mathrm{b}) \cdot \mathrm{c}=<(\mathrm{a} \times \mathrm{b})_{\mathrm{x}} \mathrm{c}_{\mathrm{x}}+(\mathrm{a} \times \mathrm{b})_{\mathrm{y}} \mathrm{c}_{\mathrm{y}}+(\mathrm{a} \times \mathrm{b})_{\mathrm{z}} \mathrm{c}_{\mathrm{z}}>= \\
=<3+2 \mathrm{n},-12,-15+2 \mathrm{n}>\cdot<-1,2,3>= \\
=-2 \mathrm{n}+3(2 \mathrm{n}-15)-27=4 \mathrm{n}-72=0 \\
\mathrm{n}=\frac{72}{4}=18
\end{gathered}
$$

Answer: vectors are coplanar when $\mathrm{n}=18$.

