Answer on Question \#44384 - Math - Statistics and Probability

Task:

From a sample of 10 squirrels the average weight was 511 grams with standard deviation of 160 grams.

What is the t value for a 95% confidence interval?
What are the lower and upper limits of the 95% confidence interval?

Solution:

The confidence interval is:

$$
\bar{x}-t \frac{\delta}{\sqrt{n}}<a<\bar{x}+t \frac{\delta}{\sqrt{n}}
$$

where $\bar{x}=511, \delta=160, n=10 . \quad \Phi(t)-$ Laplace function

x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
1,26	0,3962	1,59	0,4441	1,92	0,4726	2,50	0,4938
1,27	0,3980	1,60	0,4452	1,93	0,4732	2,52	0,4941
1,28	0,3997	1,61	0,4463	1,94	0.4738	2,54	0,4945
1,29	0,4015	1,62	0,4474	1,95	0,4744	2,56	0,4948
1,30	0,4032	1,63	0,4484	1,96	0,4750	2,58	0,4951
1,31	0,4049	1,64	0,4495	1,97	0,4756	2,60	0,4953
1,32	0,4066	1,65	0,4505	1,98	0,4761	2,62	0,4956
1,33	0,4082	1,66	0,4515	1,99	0,4767	2,64	0,4959
1,34	0,4099	1,67	0,4525	2,00	0,4772	2,66	0,4961
1,35	0,4115	1,68	0,4535	2,02	0,4783	2,68	0,4963

$\mathrm{P}=0,95=2 \Phi(t) ; \Phi(t)=\frac{0,95}{2}=0,475$. From the table we can see that $\mathrm{t}=1,96$.
Now we can use the formula:

$$
511-1,96 \frac{160}{\sqrt{10}}<\alpha<511+1,96 \frac{160}{\sqrt{10}}
$$

So, lower and upper limits of the 95% confidence interval are:

$$
411,82<\alpha<610,18
$$

Answer:

$\mathrm{t}=1,96, \quad 411,82<\alpha<610,18$

