Answer on Question \#44366 - Math - Abstract Algebra

Problem.

Which of the following statements are true and which are false? Justify your answer with a short proof or a counterexample.
i) On the set $f 1 ; 2 ; 3 \mathrm{~g}, \mathrm{R}=\mathrm{f}(1 ; 1) ;(2 ; 2) ;(3 ; 3) \mathrm{g}$ is an equivalence relation.
ii) No non-abelian group of order n can have an element of order n.
iii) For every composite natural number n, there is a non-abelian group of order n.
iv) Every Sylow p-subgroup of a finite group is normal.
v) If a commutative ring with unity has zero divisors, it also has nilpotent elements.
vi) If R is a ring with identity and $u 2 R$ is a unit in $R, 1+u$ is not a unit in R.
vii) If a and b are elements of a group G such that $o(a)=2, o(b)=3$, then $o(a b)=6$.
viii) Every integral domain is an Euclidean domain.
ix) The quotient field of the ring
fa+ibja;b 2 Zg
is C .
$x)$ The field $Q(p 2)$ is not the subfield of any field of characteristic p, where $p>1$ is a prime.
Remark. The statement of the problem is formatted incorrectly. I suppose that the correct statement is
"Which of the following statements are true and which are false? Justify your answer with a short proof or a counterexample.
i) On the set $\{1,2,3\}, R=\{(1 ; 1),(2 ; 2),(3 ; 3)\}$ is an equivalence relation.
ii) No non-abelian group of order n can have an element of order n.
iii) For every composite natural number n, there is a non-abelian group of order n.
iv) Every Sylow p-subgroup of a finite group is normal.
v) If a commutative ring with unity has zero divisors, it also has nilpotent elements.
vi) If R is a ring with identity and $u \in R$ is a unit in $R, 1+u$ is not a unit in R.
vii) If a and b are elements of a group G such that $o(a)=2, o(b)=3$, then $o(a b)=6$.
viii) Every integral domain is an Euclidean domain.
ix) The quotient field of the ring

$$
\{a+i b \mid a, b \in \mathbb{Z}\}
$$

is \mathbb{C}.
x) The field $\mathbb{Q}(\sqrt{2})$ is not the subfield of any field of characteristic p, where $p>1$ is a prime."

Solution.

i) True.

The reflexivity holds, as for all $\in\{1,2,3\}(x, x) \in R$.
The symmetry holds, as if $(x, y) \in R$, then $(y, x) \in R$, as there are only elements of type (x, x) in R.
The transitivity holds, as if $(x, y) \in R,(y, z) \in R$, then $(x, z) \in R$, as there are only elements of type (x, x) in R.
ii) True.

If there is element of order n in the group of order n, then this group is cyclic. The cyclic group is abelian.
iii) False.

Each group of order 4 is isomorphic to \mathbb{Z}_{4} or to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
iv) False.

The S_{4} doesn't have normal Sylow subgroup.
v) False.
\mathbb{Z}_{6} has zero divisor, but doesn't have nilpotent elements.
vi) False.

If $R=\mathbb{R}$ and $u=2$, then $u=3$ is unit.
vii) False.

If $a=\left(\begin{array}{ll}1 & 2\end{array}\right) \in S_{3}$ and $b=\left(\begin{array}{ll}1 & 2\end{array}\right) \in S_{3}$, then $a b=\left(\begin{array}{ll}3 & 2\end{array}\right) \in S_{3}$ and $\left.o\left(\begin{array}{ll}3 & 2\end{array}\right)\right)=2$.
viii) False.
$\mathbb{Q}(\sqrt{-19})$ is integral domain, but isn't an Euclidean domain.
ix) False.

The quotient field is field with element (x, y) where $x, y \in R$ and R should be an integral domain.
x) True.

If field $\mathbb{Q}(\sqrt{2})$ is the subfield of any field of characteristic p, then $\sqrt{2} p=0$.

