

Answer on Question #44366 – Math - Abstract Algebra

Problem.

Which of the following statements are true and which are false? Justify your answer with a short proof or a counterexample.

- i) On the set $f: \{1, 2, 3\} \times \{1, 2, 3\} \rightarrow \{1, 2, 3\}$, $R = \{(1, 1), (2, 2), (3, 3)\}$ is an equivalence relation.
- ii) No non-abelian group of order n can have an element of order n .
- iii) For every composite natural number n , there is a non-abelian group of order n .
- iv) Every Sylow p -subgroup of a finite group is normal.
- v) If a commutative ring with unity has zero divisors, it also has nilpotent elements.
- vi) If R is a ring with identity and $u \in R$ is a unit in R , $1+u$ is not a unit in R .
- vii) If a and b are elements of a group G such that $o(a) = 2$, $o(b) = 3$, then $o(ab) = 6$.
- viii) Every integral domain is an Euclidean domain.
- ix) The quotient field of the ring $fa+ib; a, b \in \mathbb{Z}$ is \mathbb{C} .

x) The field $\mathbb{Q}(p^2)$ is not the subfield of any field of characteristic p , where $p > 1$ is a prime.

Remark. The statement of the problem is formatted incorrectly. I suppose that the correct statement is

“Which of the following statements are true and which are false? Justify your answer with a short proof or a counterexample.

- i) On the set $\{1, 2, 3\}$, $R = \{(1, 1), (2, 2), (3, 3)\}$ is an equivalence relation.
- ii) No non-abelian group of order n can have an element of order n .
- iii) For every composite natural number n , there is a non-abelian group of order n .
- iv) Every Sylow p -subgroup of a finite group is normal.
- v) If a commutative ring with unity has zero divisors, it also has nilpotent elements.
- vi) If R is a ring with identity and $u \in R$ is a unit in R , $1+u$ is not a unit in R .
- vii) If a and b are elements of a group G such that $o(a) = 2$, $o(b) = 3$, then $o(ab) = 6$.
- viii) Every integral domain is an Euclidean domain.
- ix) The quotient field of the ring

$$\{a + ib \mid a, b \in \mathbb{Z}\}$$

is \mathbb{C} .

x) The field $\mathbb{Q}(\sqrt{2})$ is not the subfield of any field of characteristic p , where $p > 1$ is a prime.”

Solution.

i) True.

The reflexivity holds, as for all $x \in \{1, 2, 3\}$ $(x, x) \in R$.

The symmetry holds, as if $(x, y) \in R$, then $(y, x) \in R$, as there are only elements of type (x, x) in R .

The transitivity holds, as if $(x, y) \in R$, $(y, z) \in R$, then $(x, z) \in R$, as there are only elements of type (x, x) in R .

ii) True.

If there is element of order n in the group of order n , then this group is cyclic. The cyclic group is abelian.

iii) False.

Each group of order 4 is isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

iv) False.

The S_4 doesn't have normal Sylow subgroup.

v) False.

\mathbb{Z}_6 has zero divisor, but doesn't have nilpotent elements.

vi) False.

If $R = \mathbb{R}$ and $u = 2$, then $u = 3$ is unit.

vii) False.

If $a = (1\ 2) \in S_3$ and $b = (1\ 2\ 3) \in S_3$, then $ab = (3\ 2) \in S_3$ and $o((3\ 2)) = 2$.

viii) False.

$\mathbb{Q}(\sqrt{-19})$ is integral domain, but isn't an Euclidean domain.

ix) False.

The quotient field is field with element (x, y) where $x, y \in R$ and R should be an integral domain.

x) True.

If field $\mathbb{Q}(\sqrt{2})$ is the subfield of any field of characteristic p , then $\sqrt{2}p = 0$.