Answer on Question \#44363 - Math - Abstract Algebra

Question Find, with justification, all the Sylow subgroups of Z_{15}.
Solution. The group Z_{15} has order $15=3 \cdot 5$, therefore its Sylow subgroups has orders 3 or 5 . Since the numbers 3 and 5 are prime, the groups of order 3 or 5 are cyclic. Hence, the desired subgroups are generated by the elements of Z_{15} of order 3 or 5 . We know that the order $|n|$ of an element $n \in Z_{15}$ equals $n / \operatorname{gcd}(n, 15)$. So, $|n|=3$ if and only if $\operatorname{gcd}(n, 15)=5$, while $|n|=5$ if and only if $\operatorname{gcd}(n, 15)=3$. The numbers n between 0 and 14 , such that $\operatorname{gcd}(n, 15)=5$, are

$$
n=5,10 .
$$

Since $10=5 \cdot 2$, the element 10 generates the same cyclic subgroup as 5 does. Thus, Z_{15} has a unique subgroup of order 3. It is $\langle 5\rangle$.

The numbers n between 0 and 14 , such that $g c d(n, 15)=3$, are

$$
n=3,6,9,12 .
$$

All these numbers belong to the same cyclic subgroup $\langle 3\rangle$ of order 5 . Thus, Z_{15} has a unique subgroup of order 5 . It is $\langle 3\rangle$.

Answer: $\langle 5\rangle=\{0,5,10\}$ of order 3 and $\langle 3\rangle=\{0,3,6,9,12\}$ of order 5 .

