Problem.

5) a) Let H = h(1 2)i and K = h(1 2 3)i be subroups of S3. Check that S3 = HK. Is S3 the internal direct product of H and K? Justify your answer.

b) Let s = 1 2 3 4 5 6 7

 $2\ 4\ 5\ 6\ 7\ 3\ 1and\ t=1\ 2\ 3\ 4\ 5\ 6\ 7$

3 2 4 1 6 5 7be elements of S7.

i) Write both s and t as product of disjoint cycles and as a product of transpositions,

ii) Find the signatures of s and t.

iii) Compute ts

Remark.

The statement isn't correctly formatted. I suppose that the correct statement is "5) a) Let $H = \langle (12) \rangle$ and $K = \langle (123) \rangle$ be subroups of S_3 . Check that $S_3 = HK$. Is S_3 the internal direct product of H and K? Justify your answer.

b) Let $s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 6 & 7 & 3 & 1 \end{pmatrix}$ and $t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 6 & 5 & 7 \end{pmatrix}$ be elements of S_7 . i) Write both s and t as product of disjoint cycles and as a product of transpositions,

ii) Find the signatures of s and t.

iii) Compute ts."

Solution.

a) The elements of H are $\{e, (12)\}$.

The elements of *K* are $\{e, (1 \ 2 \ 3), (1 \ 3 \ 2)\}$ There 6 elements in S_3 each of it could be presented as product elements from *H* and *K*. e = ee; $(1 \ 2) = (1 \ 2)e;$ $(1 \ 3) = (1 \ 2)(1 \ 3 \ 2);$ $(2 \ 3) = (1 \ 2)(1 \ 2 \ 3);$ $(1 \ 2 \ 3) = e(1 \ 2 \ 3);$ $(1 \ 3 \ 2) = e(1 \ 3 \ 2).$

i) $s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 6 & 7 & 3 & 1 \end{pmatrix} = (1 \ 2 \ 4 \ 6 \ 3 \ 5 \ 7) = (1 \ 2)(2 \ 4)(4 \ 6)(6 \ 3)(3 \ 5)(5 \ 7).$ $t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 6 & 5 & 7 \end{pmatrix} = (1 \ 3 \ 4)(5 \ 6) = (1 \ 3)(3 \ 4)(5 \ 6).$ ii) $sgn(s) = (-1)^6 = 1$ and $sgn(t) = (-1)^3 = 1.$ iii) $ts = (1 \ 3 \ 4)(5 \ 6)(1 \ 2 \ 4 \ 6 \ 3 \ 5 \ 7) = (1 \ 2)(3 \ 6 \ 4 \ 5 \ 7).$