Answer on Question #44340 – Math - Linear Algebra

Problem

Standard basis vectors for R^3 are (1,0,0),(0,1,0) and (0,0,1). If we want to insert $u \rightarrow$ into this basic, then which vector from standard basis can be removed while still maintaining the basis of R^3.

Discuss the case when: $u \rightarrow = (4,3,6)$

 $u \rightarrow = (4,0,6)$

Interpret the result geometrically in both cases.

Solution

1) $\vec{u} = (4, 3, 6).$

 $\vec{u} = 4(1, 0, 0) + 3(0, 1, 0) + 6(0, 0, 1)$, thus we can remove each vector from standard basis and each of $(\vec{u}, \vec{e_1}, \vec{e_2}), (\vec{u}, \vec{e_1}, \vec{e_3}), (\vec{u}, \vec{e_3}, \vec{e_2})$ will form the basis of \mathbb{R}^3 .

Geometrical interpretation: none of Oxy, Oyz, Oxz contains \vec{u} .

2) $\vec{u} = (4, 0, 6).$

 $\vec{u} = 4(1, 0, 0) + 6(0, 0, 1)$, which means that $(\vec{u}, \vec{e_1}, \vec{e_3})$ are not linearly independent, thus we can remove only $\vec{e_1}$ or $\vec{e_3}$ not $\vec{e_2}$. So, $(\vec{u}, \vec{e_1}, \vec{e_2})$, $(\vec{u}, \vec{e_3}, \vec{e_2})$ can form the basis of \mathbb{R}^3 . Geometrical interpretation: neither 0xy nor 0yz contains \vec{u} , but \vec{u} lies in 0xz.