## Answer on Question \#44340 - Math - Linear Algebra

## Problem

Standard basis vectors for $R^{\wedge} 3$ are $(1,0,0),(0,1,0)$ and $(0,0,1)$. If we want to insert $u \rightarrow$ into this basic, then which vector from standard basis can be removed while still maintaining the basis of R^3.
Discuss the case when:
$u \rightarrow=(4,3,6)$
$u \rightarrow=(4,0,6)$
Interpret the result geometrically in both cases.

## Solution

1) $\overrightarrow{\boldsymbol{u}}=(4,3,6)$.
$\overrightarrow{\boldsymbol{u}}=\mathbf{4}(\mathbf{1}, \mathbf{0}, \mathbf{0})+\mathbf{3}(\mathbf{0}, \mathbf{1}, \mathbf{0})+\mathbf{6}(\mathbf{0}, \mathbf{0}, \mathbf{1})$, thus we can remove each vector from standard basis and each of $\left(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{e}_{1}}, \overrightarrow{\boldsymbol{e}_{2}}\right),\left(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{e}_{1}}, \overrightarrow{\boldsymbol{e}_{3}}\right),\left(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{e}_{3}}, \overrightarrow{\boldsymbol{e}_{2}}\right)$ will form the basis of $\mathbb{R}^{3}$.
Geometrical interpretation: none of $\boldsymbol{O x y}, \boldsymbol{O y z}, \boldsymbol{O x z}$ contains $\overrightarrow{\boldsymbol{u}}$.
2) $\overrightarrow{\boldsymbol{u}}=(4,0,6)$.
$\overrightarrow{\boldsymbol{u}}=\mathbf{4}(\mathbf{1}, \mathbf{0}, \mathbf{0})+\mathbf{6}(\mathbf{0}, \mathbf{0}, \mathbf{1})$, which means that $\left(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{e}_{1}}, \overrightarrow{\boldsymbol{e}_{3}}\right)$ are not linearly independent, thus we can remove only $\overrightarrow{\boldsymbol{e}_{1}}$ or $\overrightarrow{\boldsymbol{e}_{3}}$ not $\overrightarrow{\boldsymbol{e}_{2}}$. So, $\left(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{e}_{1}}, \overrightarrow{\boldsymbol{e}_{2}}\right),\left(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{e}_{3}}, \overrightarrow{\boldsymbol{e}_{2}}\right)$ can form the basis of $\mathbb{R}^{3}$.
Geometrical interpretation: neither $\boldsymbol{O x y}$ nor $\boldsymbol{O} \boldsymbol{y z}$ contains $\overrightarrow{\boldsymbol{u}}$, but $\overrightarrow{\boldsymbol{u}}$ lies in $\boldsymbol{O X z}$.
