Solve $d y / d x=(y+x-2) /(y-x-4)$

Solution:

We make the change of variables:

$$
\left\{\begin{array}{l}
x=\xi+x_{0} \\
y=\eta+y_{0}
\end{array}\right.
$$

where x_{0} and y_{0} are the solutions of linear system of equations

$$
\left\{\begin{array}{l}
y_{0}+x_{0}-2=0 \\
y_{0}-x_{0}-4=0
\end{array}\right.
$$

Rewrite the system in matrix form and solve it by Gaussian Elimination
$\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & -1 & 4\end{array}\right]$
from 2 rows we subtract the 1-th row, multiplied respectively by 1
$\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & 2\end{array}\right]$
divide the 2-th row by -2
$\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & -1\end{array}\right]$
from 1 rows we subtract the 2 -th row
$\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & -1\end{array}\right]$
Answer:
$\left\{\begin{array}{l}x_{0}=-1 \\ y_{0}=3\end{array}\right.$
For new variables we have $d x=d \xi, d y=d \eta$ and $d \eta / d \xi=(\eta+\xi) /(\eta-\xi)$. We make the change of variable $\mathrm{z}=\eta / \xi$, then $\eta=\xi * z$ and $d \eta / d \xi=z+\xi *$ $d z / d \xi$.
Now for variable z we obtain differential equation:
$z+\xi * d z / d \xi=(z+1) /(z-1)$
collecting terms containing z we obtained equation with separable variables $\xi * d z / d \xi=\left(-z^{2}+2 z+1\right) /(z-1)$.
Separating variables

$$
\frac{z-1}{-z^{2}+2 z+1} * d z=\frac{d \xi}{\xi}
$$

Integrating the left-hand side of the equality with respect to z and right side with respect to ξ :
$\int \frac{z-1}{-z^{2}+2 z+1} d z=\int \frac{-2 z+2}{-2\left(-z^{2}+2 z+1\right)} d z=\int \frac{d\left(-z^{2}+2 z+1\right)}{-2\left(-z^{2}+2 z+1\right)}=-\frac{1}{2} * \ln \left|-z^{2}+2 z+1\right|+\mathrm{C}$, $\int \frac{d \xi}{\xi}=\ln |\xi|+C$
We have
$-\frac{1}{2} * \ln \left|-z^{2}+2 z+1\right|=\ln |\xi|+\ln C$.
(we denote arbitrary constant C by $\ln C$)
Using the properties of logarithms $\ln (\mathrm{x})$:

$$
\ln \left|\frac{1}{\sqrt{-z^{2}+2 z+1}}\right|=\ln |\xi * C|
$$

from here obtained

$$
\frac{1}{\sqrt{-z^{2}+2 z+1}}=\xi * C
$$

or rewrite equality by $C_{1}=\left(-z^{2}+2 z+1\right) * \xi^{2}$, where C_{1} arbitrary constant.

Back to old variables

$$
\mathrm{z}=\frac{\eta}{\xi}=\frac{y-y_{0}}{x-x_{0}}=\frac{y-3}{x+1}
$$

We have
$C_{1}=(x+1)^{2 *}\left(-\left(\frac{y-3}{x+1}\right)^{2}+2\left(\frac{y-3}{x+1}\right)+1\right)=-(y-3)^{2}+2(y-3)(x+1)+$ $+(x+1)^{2}=-y^{2}+2 x y+x^{2}+8 y-4 x-14$.
denote arbitrary constant $C_{1}+14$ by C , then

Answer:

$-y^{2}+2 x y+x^{2}+8 y-4 x=\mathrm{C}$, where C arbitrary constant, is a solution of differential equation $d y / d x=(y+x-2) /(y-x-4)$.

