Answer on Question \#44313 - Math - Analytic Geometry

Find the angle between the given vectors to the nearest tenth of a degree.
$u=<-5,-4>, v=<-4,-3>$

Solution:

$\mathrm{u}=<-5,-4>$
$\mathrm{v}=<-4,-3>$
Magnitudes of the vectors:
$|u|=\sqrt{(-5)^{2}+(-4)^{2}}=\sqrt{41}$
$|v|=\sqrt{(-4)^{2}+(-3)^{2}}=\sqrt{25}=5$
The scalar product of vectors ($\alpha-$ angle between vectors)

$$
\begin{gathered}
u \cdot v=|u| \cdot|v| \cdot \cos \alpha \\
\cos \alpha=\frac{u \cdot v}{|u| \cdot|v|} \\
\alpha=\arccos \left(\frac{u \cdot v}{|u| \cdot|v|}\right)=\arccos \left(\frac{u \cdot v}{|u| \cdot|v|}\right) \\
=\arccos \left(\frac{(-5) \cdot(-4)+(-4) \cdot(-3)}{\sqrt{41} \cdot 5}\right)=\arccos \left(\frac{32 \sqrt{41}}{41 \cdot 5}\right)=1.8^{\circ}
\end{gathered}
$$

Answer: angle between the given vectors is 1.8°.

