Answer on Question \#44256, Math, Trigonometry

The angle of elevation of a tower from a point L is 62°. From a point $K, 50 \mathrm{~m}$ further from the tower, the angle of elevation is 47°. (Let the height of the tower be h.)
a Use the sine rule in $\triangle K T L$ to show that: $T L=$
b Use trigonometry in $\triangle \mathrm{LMT}$ to show that: $\mathrm{TL}=$
c Hence, show that $\mathrm{h}=$
d Calculate the height, h, of the tower, correct to one decimal place.

15 From the top of a cliff, the angles of depression of two boats at sea 0.5 km apart are 55° and 33°. (Let the height of the cliff be h.)
a Show that the height of the cliff is: $\mathrm{h}=$
b Hence, calculate the height, correct to the nearest metre.

Solution:

Angles of elevation and depression (Φ) are formed by the horizontal lines that a viewer's lines of sight form to an object.

For the first problem we have drawing:

TM=h (height of the tower), $\mathrm{MK}=50 \mathrm{~m}$ (distance from a point K to tower)
a) In trigonometry, sine rule is an equation relating the lengths of the sides to the sines of its angles. According to the law

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

where a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles.

Hence in $\triangle K T L$ from sine rule: $\frac{\sin \angle K T L}{L K}=\frac{\sin \angle T K L}{T L}$ $\angle K T L=180^{\circ}-\angle T K L-\left(180^{\circ}-\angle T L M\right)=180^{\circ}-47^{\circ}-\left(180^{\circ}-62^{\circ}\right)=15^{\circ}$. From here we obtain $\mathrm{TL}=\mathrm{LK} * \frac{\sin 47^{\circ}}{\sin 15^{\circ}}$
b) in $\triangle \mathrm{LMT} \angle T M L=90^{\circ}$, hence $\mathrm{TL}=\frac{T M}{\sin \angle T L M}=\frac{T M}{\sin 62^{\circ}}=\frac{h}{\sin 62^{\circ}}$
c) from b) we obtain $\mathrm{h}=\mathrm{TL} * \sin 62^{\circ}$, also from $\Delta K M T \frac{T M}{M K}=\tan 47^{\circ}$, hence $\mathrm{h}=\mathrm{MK} * \tan 47^{\circ}$.
d) $\mathrm{h}=\mathrm{MK}^{*} \tan 47^{\circ}=50^{*} 1.072=53.6(\mathrm{~m})$

Second problem:

A-first boat, B-second boat, $A B=0.5 \mathrm{~km}$ distance between boats
$\angle O C B=33^{\circ}, \angle O C A=55^{\circ}$ the angles of depression of two boats.
Lines CO and DA are parallel, hence $\angle B A C=180^{\circ}-\angle O C A=180^{\circ}-55^{\circ}=125^{\circ}$.
In $\triangle \mathrm{ABC}$ from sine rule: $\frac{\sin \angle B A C}{B C}=\frac{\sin \angle A C B}{A B}$, and $\mathrm{BC}=\frac{\sin \angle B A C}{\sin \angle A C B} * A B$.
$\angle A C B=\angle O C A-\angle O C B=22^{\circ} . \operatorname{In} \triangle C D B \angle C D B=90^{\circ}, \angle D B C=90^{\circ}-33^{\circ}=57^{\circ}$.
Hence
a) $\mathrm{h}=\mathrm{CD}=\mathrm{BC} * \cos \angle D B C=\frac{\sin \angle B A C}{\sin \angle A C B} * \mathrm{AB} * \cos \angle D B C$
b) from a) obtain $h=0.5^{*} \frac{\sin 125^{\circ}}{\sin 22^{\circ}} * \cos 57^{\circ}=0.595(\mathrm{~km})$

