Answer on Question #44256, Math, Trigonometry

The angle of elevation of a tower from a point L is 62°. From a point K, 50 m further from the tower, the angle of elevation is 47°. (Let the height of the tower be h.)

a Use the sine rule in Δ KTL to show that: TL =

b Use trigonometry in Δ LMT to show that: TL =

c Hence, show that h =

d Calculate the height, h, of the tower, correct to one decimal place.

15 From the top of a cliff, the angles of depression of two boats at sea 0.5 km apart are 55° and

33°. (Let the height of the cliff be h.)

a Show that the height of the cliff is: h =

b Hence, calculate the height, correct to the nearest metre.

Solution:

Angles of elevation and depression (Φ) are formed by the horizontal lines that a viewer's lines of sight form to an object.

For the first problem we have drawing:

TM=h (height of the tower), MK=50 m (distance from a point K to tower)

a) In trigonometry, sine rule is an equation relating the lengths of the sides to the sines of its angles. According to the law

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

where a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles.

Hence in Δ KTL from sine rule: $\frac{\sin \angle KTL}{LK} = \frac{\sin \angle TKL}{TL}$ $\angle KTL = 180^{\circ} - \angle TKL - (180^{\circ} - \angle TLM) = 180^{\circ} - 47^{\circ} - (180^{\circ} - 62^{\circ}) = 15^{\circ}$. From here we obtain $TL = LK * \frac{\sin 47^{\circ}}{\sin 15^{\circ}}$ b) in Δ LMT $\angle TML = 90^{\circ}$, hence $TL = \frac{TM}{\sin \angle TLM} = \frac{TM}{\sin 62^{\circ}} = \frac{h}{\sin 62^{\circ}}$ c) from b) we obtain h=TL*sin 62°, also from Δ KMT $\frac{TM}{MK} = \tan 47^{\circ}$, hence h=MK* tan47°.

d) h=MK* tan47°=50*1.072=53.6 (m)

Second problem:

A-first boat, B-second boat, AB=0.5 km distance between boats

 $\angle OCB=33^\circ$, $\angle OCA=55^\circ$ the angles of depression of two boats.

Lines CO and DA are parallel, hence $\angle BAC = 180^{\circ} - \angle OCA = 180^{\circ} - 55^{\circ} = 125^{\circ}$.

In $\triangle ABC$ from sine rule: $\frac{\sin \angle BAC}{BC} = \frac{\sin \angle ACB}{AB}$, and $BC = \frac{\sin \angle BAC}{\sin \angle ACB} * AB$. $\angle ACB = \angle OCA - \angle OCB = 22^\circ$. In $\triangle CDB \angle CDB = 90^\circ$, $\angle DBC = 90^\circ$ -33°=57°. Hence

a)h=CD=BC* cos
$$\angle DBC = \frac{\sin \angle BAC}{\sin \angle ACB}$$
AB cos $\angle DBC$
b) from a) obtain h=0.5* $\frac{\sin 125^{\circ}}{\sin 22^{\circ}}$ * cos57°=0.595(km)