Answer on Question \#44251 - Math - Differential Calculus | Equations

Solve the following Cauchy Euler equation by the method of variation of parameters.

$$
x^{2} y^{n}-x y^{\prime}+y=2 x
$$

Determine the singular points of the following differential equation and classify each singular point as regular or irregular.

$$
\left(x^{2}-9\right)^{2} y^{n}+(x+3) y^{\prime}+2 y=0 .
$$

Solution.

Solve the Cauchy Euler equation by the method of variation of parameters.
By definition a Cauchy-Euler equation of order n has the form

$$
a_{n} x^{n} y^{(n)}(x)+a_{n-1} x^{n-1} y^{(n-1)}(x) \ldots+a_{0} y(x)=0
$$

So the correct equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=2 x
$$

Solve this equation. The general solution will be the sum of the complementary solution and particular solution.

Find the complementary solution by solving $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$.
Assume a solution to this Euler-Cauchy equation will be proportional to x^{λ} for some constant λ.
Substitute $y(x)=x^{\lambda}$ into the differential equation:

$$
\begin{gathered}
x^{2}\left(x^{\lambda}\right)^{\prime \prime}-x\left(x^{\lambda}\right)^{\prime}+x^{\lambda}=0 \\
\lambda^{2} x^{\lambda}-2 \lambda x^{\lambda}+x^{\lambda}=0
\end{gathered}
$$

Factor out x^{λ} :

$$
\left(\lambda^{2}-2 \lambda+1\right) x^{\lambda}=0
$$

Assuming $x \neq 0$, the zeros must come from the polynomial:

$$
\lambda^{2}-2 \lambda+1=0
$$

Solve for λ :

$$
\lambda_{1,2}=1
$$

The multiplicity of the root $\lambda=1$ is 2 which gives $y_{1}(x)=c_{1} x, y_{2}(x)=c_{2} x \ln x$ as solutions, where c_{1} and c_{2} are arbitrary constants.

The complementary solution is the sum of the above solutions:

$$
y_{c}(x)=y_{1}(x)+y_{2}(x)=c_{1} x+c_{2} x \ln x
$$

Determine the particular solution by variation of parameters.
List the basis solutions in $y_{c}(x)$:

$$
y_{b_{1}}(x)=x \text { and } y_{b_{2}}(x)=x \ln x
$$

Compute the Wronskian of $y_{b_{1}}(x)$ and $y_{b_{2}}(x)$:

$$
W(x)=\left|\begin{array}{cc}
x & x \ln x \\
\frac{d}{d x}(x) & \frac{d}{d x}(x \ln x)
\end{array}\right|=\left|\begin{array}{cc}
x & x \ln x \\
1 & \ln x+1
\end{array}\right|=x
$$

Divide the differential equation by the leading term's coefficient x^{2} :

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=\frac{2}{x}
$$

Let $f(x)=\frac{2}{x}$. Let $v_{1}(x)=-\int \frac{f(x) y_{b_{2}}(x)}{W(x)} d x$ and $v_{2}(x)=-\int \frac{f(x) y_{b_{1}}(x)}{W(x)} d x$.
The particular solution will be given by:

$$
y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)
$$

Compute $v_{1}(x)$:

$$
v_{1}(x)=-\int \frac{2 \ln x}{x} d x=-\ln ^{2} x
$$

Compute $v_{2}(x)$:

$$
v_{2}(x)=\int \frac{2}{x} d x=2 \ln x
$$

The particular solution is thus:

$$
y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)=-x \ln ^{2} x+2 x \ln ^{2} x
$$

Simplify:

$$
y_{p}(x)=x \ln ^{2} x
$$

So the general solution:

$$
y(x)=y_{c}(x)+y_{p}(x)=c_{1} x+c_{2} x \ln x+x \ln ^{2} x
$$

Answer: $y(x)=c_{1} x+c_{2} x \ln x+x \ln ^{2} x$.
Determine the singular points of the following differential equation and classify each singular point as regular or irregular.

Equation in standard form

$$
N(x) y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

So our equation

$$
\left(x^{2}-9\right)^{2} y^{\prime \prime}+(x+3) y^{\prime}+2 y=0
$$

The singular points of the equation are then the points where $N(x)=0$:

$$
\begin{gathered}
\left(x^{2}-9\right)^{2}=0 \\
x_{1,2}=3, x_{3,4}=-3
\end{gathered}
$$

Suppose x_{0} is a singular point. Multiplying through by $\left(x-x_{0}\right)^{2} / N(x)$, we may rewrite equation as

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) u(x) y^{\prime}+v(x) y=0
$$

where

$$
u(x)=\frac{\left(x-x_{0}\right) P(x)}{N(x)}, v(x)=\frac{\left(x-x_{0}\right)^{2} Q(x)}{N(x)}
$$

We say that x_{0} is a regular singular point if the rational functions $u(x)$ and $v(x)$ have no singularity at x_{0} - that is, if the factors of $x-x_{0}$ in $N(x)$ that cause $N(x)$ to vanish at x_{0} are canceled by such factors in $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$. Otherwise x_{0} is an irregular singular point.

Consider $x_{0}=3$. Find $u(x)$ and $v(x)$:

$$
\begin{aligned}
& u(x)=\frac{(x-3)(x+3)}{\left(x^{2}-9\right)^{2}}=\frac{1}{x^{2}-9} \\
& v(x)=\frac{(x-3)^{2} \cdot 2}{\left(x^{2}-9\right)^{2}}=\frac{2}{(x+3)^{2}}
\end{aligned}
$$

$u(x)$ has singularity at x_{0}, so $x_{0}=3$ is an irregular singular point.
Consider $x_{0}=-3$. Find $u(x)$ and $v(x):$

$$
\begin{gathered}
u(x)=\frac{(x+3)(x+3)}{\left(x^{2}-9\right)^{2}}=\frac{1}{(x-3)^{2}} \\
v(x)=\frac{(x+3)^{2} \cdot 2}{\left(x^{2}-9\right)^{2}}=\frac{2}{(x-3)^{2}}
\end{gathered}
$$

$u(x)$ and $v(x)$ have no singularity at x_{0}, so $x_{0}=-3$ is a regular singular point.
Answer: $x_{0}=3$ is an irregular singular point, $x_{0}=-3$ is a regular singular point.

