Answer on Question \#44245, Math, Complex Analysis

$w=(3-i) /(2 i-1)$ solving this i get that $w=-i-1$ now i want to express w in polar form: $r=s q r t 2$ but can you explain why $\arg (\mathrm{w})=-3 \mathrm{pi} / 4$? when $\arctan (1)=\mathrm{pi} / 4$ (how do they get $-3 \mathrm{pi} / 4$) and if $\arg (\mathrm{w})=-$ $3 \mathrm{pi} / 4$ can i than write $5 \mathrm{pi} / 4$ instead and $z^{\wedge} 4=\mathrm{w}$ and how to draw the solutions in the complex plane.

Solution.

$$
w=\frac{3-i}{2 i-1}=\frac{(3-i)(-2 i-1)}{(2 i-1)(-2 i-1)}=\frac{-6 i-3-2+i}{1+4}=\frac{-5-5 i}{5}=-1-i .
$$

The modulus equals $|w|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$. Hence $w=\sqrt{2}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)$. The argument of z is the value of ϕ for which $\cos \phi=-\frac{1}{\sqrt{2}}$ and $\sin \phi=-\frac{1}{\sqrt{2}}$. The $\frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}}=\tan \frac{\pi}{4}=\tan \left(-\frac{3 \pi}{4}\right)=\frac{\sin \left(-\frac{3 \pi}{4}\right)}{\cos \left(-\frac{3 \pi}{4}\right)}=$ 1, but $\cos \frac{\pi}{4}=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \neq-\frac{1}{\sqrt{2}}$. The set of values ϕ is $\left\{-\frac{3 \pi}{4}+2 \pi n: n \in \mathbb{Z}\right\}$. To make $\arg w$ a well-defined function, it is defined as function which equals the value of ϕ in the open-closed (closed-open) interval of the length 2π. Authors often use $(-\pi ; \pi]$, but in some literature you may find interval $(0 ; 2 \pi]$, the value in this interval is often denoted as $\operatorname{Arg}(w)$. Hence you may write that $w=\sqrt{2}\left(\cos \frac{5 \pi}{4}+\sin \frac{5 \pi}{4}\right)$, but $\arg (w) \neq \frac{5 \pi}{4}$. From the n-th root formula the solution of the equation $z^{4}=w$.

$$
\begin{gathered}
z_{0}=\sqrt[8]{2}\left(\sin \left(-\frac{3 \pi}{16}\right)+i \cos \left(-\frac{3 \pi}{16}\right)\right) \\
z_{1}=\sqrt[8]{2}\left(\sin \left(\frac{\frac{-3 \pi}{4}+2 \pi}{4}\right)+i \cos \left(\frac{\frac{-3 \pi}{4}+2 \pi}{4}\right)\right)=\sqrt[8]{2}\left(\sin \left(\frac{5 \pi}{16}\right)+i \cos \left(\frac{5 \pi}{16}\right)\right) ; \\
z_{2}=\sqrt[8]{2}\left(\sin \left(\frac{\frac{-3 \pi}{4}+4 \pi}{4}\right)+i \cos \left(\frac{\frac{-3 \pi}{4}+4 \pi}{4}\right)\right)=\sqrt[8]{2}\left(\sin \left(\frac{13 \pi}{16}\right)+i \cos \left(\frac{13 \pi}{16}\right)\right) ; \\
z_{3}=\sqrt[8]{2}\left(\sin \left(\frac{\frac{-3 \pi}{4}+6 \pi}{4}\right)+i \cos \left(\frac{\frac{-3 \pi}{4}+6 \pi}{4}\right)\right)=\sqrt[8]{2}\left(\sin \left(\frac{21 \pi}{16}\right)+i \cos \left(\frac{21 \pi}{16}\right)\right) \\
=\sqrt[8]{2}\left(\sin \left(-\frac{11 \pi}{16}\right)+i \cos \left(-\frac{11 \pi}{16}\right)\right)
\end{gathered}
$$

The roots of the equation $z^{4}=w$ lie in the vertices of the squares with a diagonal $2|z|=2 \sqrt[8]{2}$ and center at $(0 ; 0)$. The square is rotated at angle $\frac{5 \pi}{16}$ on the center of the square.

