Suppose that a random sample of nine measurements from a normally distributed population gives a sample mean of $=2.57$ and a sample standard deviation of $s=.3$. Use critical values to test $\mathrm{HO}: \mu=3$ versus $\mathrm{Ha}: \mu \neq 3$ using levels of significance $\alpha=.10, \alpha=.05, \alpha=.01$, and $\alpha=.001$.

Solution:

$$
H_{o}: \mu=3.00, H_{a}: \mu \neq 3.00
$$

Two-tailed test.
Since $n<30$, population is normal, unknown population variance, use t-test.
Critical region is of the form $\{|T|>t\}$ or $\{T<-t, T>t\}, T$ is $a t-$ distribution, $d f=n-1=8$.
Value of test statistic,

$$
t=\frac{2.57-3.00}{\frac{0.3}{\sqrt{(9)}}}=-\frac{0.43}{0.1}=-4.3
$$

We have a T-table that gives areas for $P\{T>t\}$, for row $d f=8$ value 4.3 is between
3.36 and 4.50, with probabilities 0.001 and 0.005 respectively.

Now we can write:

$$
0.001<P\{T>4.3\}<0.005, \text { to give } 0.002<P\{|T|>4.3\}<0.01
$$

The sample value $t=-4.3$ can occur with a probability between 0.002 and 0.01 .
We have the following results:
$P\{T>4.3\}<0.01$; significant at $\alpha=0.01$ (also at 0.10 and 0.05)
$P\{T>4.3\}>0.002>0.001 ;$ not significant at $\alpha=0.001$
Conclusion: we reject $H_{o} .(\alpha=0.1, \alpha=0.01, \alpha=0.05)$.
At $\alpha=0.001$ we don't reject H_{o}.

