Answer on Question 44229 - Math -Complex Analysis
It's necessary to solve

$$
\operatorname{Im}(-z+i)=(z+i)^{2}
$$

Due to the definition, $z \in \mathbb{C}, z=x+i y ; x, y \in \mathbb{R} ; \operatorname{Im} z=\operatorname{Im}(x+i y)=y$. Having substituted $z=x+i y$ and the definition to equation, we have:

$$
\begin{gathered}
\operatorname{Im}(-z+i)=\operatorname{Im}(-x-i y+i)=\operatorname{Im}(-x+i(1-y))=1-y . \\
(z+i)^{2}=z^{2}+2 i z+i^{2}=z^{2}+2 i z-1=(x+i y)^{2}+2 i(x+i y)-1=x^{2}+2 i x y-y^{2}+2 i x-2 y-1 \\
(z+i)^{2}=x^{2}-\left(y^{2}+2 y+1\right)+i(2 x y+2 x)=x^{2}-(y+1)^{2}+i(2 x y+2 x)
\end{gathered}
$$

Left and right sides of the equation coincide, and both of sides are complex numbers, so we have the following:

$$
\left\{\begin{array}{l}
1-y=x^{2}-(y+1)^{2} \\
2 x y+2 x=0
\end{array}\right.
$$

This system must be solved. From the second equation,

$$
\begin{gathered}
2 x(1+y)=0 . \\
{\left[\begin{array}{l}
x=0 \\
y=-1 .
\end{array}\right.}
\end{gathered}
$$

If $x=0$, then from the first equation:

$$
\begin{gathered}
1-y=-(y+1)^{2} \\
1-y=-y^{2}-2 y-1 \\
y^{2}+y+2=0
\end{gathered}
$$

This equation has no real roots. If $y=-1$, then from the first equation

$$
\begin{gathered}
2=x^{2} \\
x= \pm \sqrt{2} .
\end{gathered}
$$

So, the answer is $(\pm \sqrt{2} ;-1)= \pm \sqrt{2}-i$

