Answer on Question \#44204 - Math - Real Analysis

Find the supremum and infimum of the set $\left\{(-1)^{\wedge} n(1+1 / n)\right.$: n is natural

Solution

Under even n the terms of this sequence become $\left(1+\frac{1}{n}\right), n=2,4,6, \ldots$
Under odd n the terms of this sequence become $-\left(1+\frac{1}{n}\right), n=1,3,5, \ldots$

We note that every element of the set is less than 2 since
$(-1)^{n}\left(1+\frac{1}{n}\right) \leq\left(1+\frac{1}{n}\right)<2$.
We claim that the supremum (the least upper bound) is 2 .
Assume that 2 is not the least upper bound. Then there is an $\varepsilon>0$ such that $2-\varepsilon$ is also an upper bound. However, we claim that there is a natural number n such that

$$
2-\varepsilon<1+\frac{1}{n}
$$

This inequality is equivalent with the following sequence of inequalities
$1-\varepsilon<\frac{1}{n}, \quad \frac{1}{n}>1-\varepsilon$.
If $\varepsilon<1$ then $0<n<\frac{1}{1-\varepsilon}$.
If $\varepsilon \geq 1$ then $n>0$.
There is a natural number n such that

$$
2-\varepsilon<1+\frac{1}{n}
$$

So, $2-\varepsilon$ is not an upper bound for the set. This verifies our answer.
We note that every element of the set is greater than or equal to -2 :

$$
(-1)^{n}\left(1+\frac{1}{n}\right) \geq-\left(1+\frac{1}{n}\right) \geq-2
$$

If a set has a minimum, then the minimum will also be an infimum. Infimum of the set is -2 .
Answer: 2 and -2.

