Answer on Question \#44201 - Math - Statistics and Probability

A medical test has a false positive rate of 0.2 . If 9 tests are conducted, what is the chance of getting exactly 2 false positive results?

Solution

The random variable $X=$ "the number of false positive results" is a binomial random variable, $n=9$ is a fixed number of trials, $p=0.2$ is the probability of false positive result in each trial.
X can take any value of $0,1,2,3,4,5,6,7,8,9$.
Assume that all trials are independent.
The probability of getting exactly 2 false positive results is calculated by

$$
\begin{gathered}
P(X=2)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\frac{9!}{2!7!} 0.2^{2}(1-0.2)^{7}= \\
=\frac{9 \times 8}{2} \times 0.2^{2} 0.8^{7} \approx 0.302
\end{gathered}
$$

Answer: $\frac{9 \times 8}{2} \times 0.2^{2} 0.8^{7} \approx 0.302$

