Answer on Question \#44181 - Math - Statistics and Probability

Case Study 1. Suppose that Body Mass Index (BMI) for a population of 30-60-year-old men follows a Normal distribution with mean 26, and standard deviation 4. Please calculate the range of BMI that 95% of subjects fall within? For a randomly selected $30-60$-year old man, what is the probability that he is obese (i.e. $\mathrm{BMI} \geq 30$)?

Solution:

a). To calculate the range of BMI that 95% of subjects fall within we need to determine left and right probability borders centered at mean (50%). The borders will be 2.5% and 97.5% and the probability of 95% will be the area under the curve colored in blue (see Fig.1).
Using standard table of normal distribution, we calculate z-scores for given probabilities:
For $p=0.025 z$-score is $z=-1.96$
For $p=0.975 z$-score is $z=1.96$
Using calculated z-score, we determine left and right borders using the formula $z=(x-m e a n) / s d$.
$x 1=z 1 *$ sd + mean $=-1.96 * 4+26=18.16$
$x 2=z 2 * s d+$ mean $=1.96 * 4+26=33.84$

Fig 1.
b) To determine probability of $\mathrm{BMI} \geq 30$ we need to calculate z-score for this value:
$z=(x-$ mean $) / s d=(30-26) / 4=1$
Then, using standard table of normal distribution, we find the probability: 0.8413
This is the probability that randomly selected 30-60-year old man has $\mathrm{BMI}<30$. The probability that he has $\mathrm{BMI} \geq 30$ is:
$1-0.8413=0.1587$

Answer:

a) the range is from 18.16 to 33.84
b) the probability is 0.1587 or 15.87%

R code:

a) qnorm(0.025, 26, 4); qnorm(0.975, 26, 4);
b) 1 - $\operatorname{pnorm}(30,26,4)$

