Answer on Question \#44125 - Math - Trigonometry

Two ships leave a port at the same time. The first ship sails on a course of 35 degrees at 15 knots while the second ship sails on a course of 125 degrees at 20 knots. Find after 2 hours (a) the distance between the ships, (b) the bearing from the first ship to the second ship, and (c) the bearing of the second ship to the first.

Solution:

\#1

From the given headings we can say the angle between the courses of the two ships:

$$
\alpha=125^{\circ}-35^{\circ}=90^{\circ}
$$

After $\mathrm{t}=2$ hours:
the 1st ship will have travelled distance

$$
\mathrm{d}_{1}=\mathrm{v}_{1} \cdot \mathrm{t}=15 \text { knots } \cdot 2 \text { hours }=30 \text { hknots }
$$

the 2nd ship will have travelled distance

$$
\mathrm{d}_{2}=\mathrm{v}_{2} \cdot \mathrm{t}=20 \text { knots } \cdot 2 \text { hours }=40 \text { hknots }
$$

We can use the law of cosines for a side/angle/side problem

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \alpha
$$

Assign the values as follows
$\mathrm{a}=$ distance between ships after 2 hours (side opposite angle α)
b $=30$ hknots
$\mathrm{c}=40$ hknots
$\alpha=90^{\circ}$
Thus,

$$
\begin{gathered}
a^{2}=30^{2}+40^{2}-2 \cdot 30 \cdot 40 \cdot \cos 90^{\circ} \\
a=\sqrt{30^{2}+40^{2}}=50 \text { hknots }
\end{gathered}
$$

\#2 and \#3

Now we can get the bearings or the other angles of the triangle by using (arc)trig functions.

Bearing from the first ship to the second ship:

$$
\beta=\arctan \left(\frac{c}{b}\right)=\arctan \left(\frac{40}{30}\right)=53^{\circ}
$$

The bearing of the second ship to the first.

$$
\gamma=90^{\circ}-\beta=37^{\circ}
$$

Answer:

a) distance between two ships after 2 hours: 50 hknots
b) 53°
c) 37°

