Answer on Question \#44086 - Math - Complex Analysis

Problem.

If $\llbracket\left(1+x+x^{\wedge} 2\right) \rrbracket \wedge n=a_{-} 0+a_{-} 2 x^{\wedge} 2+-----+a_{-} 2 n x^{\wedge} 2 n$ then prove that $a_{-} 0+a_{-} 3+a_{-} 6+----=3^{\wedge}(n-1)$.
Remark.
I suppose that part of question is missed. The correct statement is
"If $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}$, then prove that $a_{0}+a_{3}+a_{6}+\cdots=3^{n-1 "}$. as polynomial $\left(1+x+x^{2}\right)^{n}$ has a monomial $2 x$.

Solution:

The numbers $\xi=e^{\frac{2 \pi i}{3}}$ and $\xi^{2}=e^{\frac{4 \pi i}{3}}$ are the primitive third roots of unity. Therefore they are the roots of the polynomial $1+x+x^{2}$ (as $\left.x^{3}-1=(x-1)\left(x^{2}+x+1\right)\right)$ and $\xi^{3}=1$.
If we put $x \rightarrow \xi$ into the equation

$$
\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}
$$

we will obtain

$$
\left(1+\xi+\xi^{2}\right)^{n}=a_{0}+a_{1} \xi+a_{2} \xi^{2}+\cdots+a_{2 n} \xi^{2 n}
$$

or

$$
\begin{equation*}
0=a_{0}+a_{1} \xi+a_{2} \xi^{2}+a_{3}+a_{4} \xi+a_{5} \xi^{2}+\cdots \tag{1}
\end{equation*}
$$

as $1+\xi+\xi^{2}=0$ and $\xi^{3 k}=1$ for all integer k.
If we put $x \rightarrow \xi^{2}$ into the equation

$$
\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}
$$

we will obtain

$$
\left(1+\xi^{2}+\xi^{4}\right)^{n}=a_{0}+a_{1} \xi^{2}+a_{2} \xi^{4}+\cdots+a_{2 n} \xi^{4 n}
$$

or

$$
\begin{equation*}
0=a_{0}+a_{1} \xi^{2}+a_{2} \xi+a_{3}+a_{4} \xi^{2}+a_{5} \xi+\cdots \tag{2}
\end{equation*}
$$

as $1+\xi^{2}+\xi^{4}=1+\xi^{2}+\xi=0$ and $\xi^{3 k}=1$ for all integer k.
If we put $x \rightarrow 1$ into the equation

$$
\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}
$$

we will obtain

$$
(1+1+1)^{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{2 n}
$$

or

$$
\begin{equation*}
3^{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{2 n} \tag{3}
\end{equation*}
$$

If we add (1), (2) and (3) equations we will obtain

$$
3^{n}=3 a_{0}+\left(1+\xi+\xi^{2}\right) a_{1}+\left(1+\xi+\xi^{2}\right) a_{2}+3 a_{3}+\left(1+\xi+\xi^{2}\right) a_{4}+\left(1+\xi+\xi^{2}\right) a_{5}+\cdots
$$

or
as $1+\xi+\xi^{2}=0$.
Hence

$$
3^{n-1}=a_{0}+a_{3}+\cdots
$$

