Answer on Question \#44085 - Math - Complex Analysis

If $x=a+b, y=a \alpha+b \beta$ and $z=a \beta+b \alpha$ where α and β are complex cube roots of unity.
Show that $x y z=a^{3}+b^{3}$.

Solution

Since, α, β are the complex cube roots of unity. We take $\alpha=\omega$ and $\beta=\omega^{2}$. Now,

$$
\begin{gathered}
x y z=(\mathrm{a}+\mathrm{b})(\mathrm{a} \alpha+\mathrm{b} \beta)(\mathrm{a} \beta+\mathrm{b} \alpha)=(\mathrm{a}+\mathrm{b})\left[a^{2} \alpha \beta+\mathrm{ab}\left(\alpha^{2}+\beta^{2}\right)+\mathrm{b}^{2} \alpha \beta\right] \\
=(\mathrm{a}+\mathrm{b})\left[a^{2}\left(\omega \cdot \omega^{2}\right)+\mathrm{ab}\left(\omega^{2}+\omega^{4}\right)+\mathrm{b}^{2}\left(\omega \cdot \omega^{2}\right)\right] .
\end{gathered}
$$

But

$$
\omega \cdot \omega^{2}=\omega^{3}=1
$$

and

$$
\omega^{2}+\omega^{4}=\omega^{2}+\omega \cdot \omega^{3}=\omega^{2}+\omega \cdot 1=\omega^{2}+\omega
$$

Since

$$
\omega^{2}+\omega+1=0 \rightarrow \omega^{2}+\omega=-1
$$

So,

$$
x y z=(\mathrm{a}+\mathrm{b})\left[a^{2}-\mathrm{ab}+\mathrm{b}^{2}\right]=a^{3}+b^{3}
$$

