Answer on Question #44081 - Math - Vector Calculus

Show that $(a-d) \times (b-c) + (b-d) \times (c-a) + (c-d) \times (a-b)$ is independent of d.

Solution.

$$(a-d) \times (b-c) = (a \times b) - (a \times c) - (d \times b) + (d \times c);$$

$$(b-d) \times (c-a) = (b \times c) - (b \times a) - (d \times c) + (d \times a);$$

$$(c-d) \times (a-b) = (c \times a) - (c \times b) - (d \times a) + (d \times b);$$

As we know for every vectors a and b the following is correct $(a \times b) = -(b \times a)$. Thus,

$$(a-d) \times (b-c) + (b-d) \times (c-a) + (c-d) \times (a-b) =$$

$$= (a \times b) - (a \times c) - (d \times b) + (d \times c) + (b \times c) - (b \times a) - (d \times c) + (d \times a) + (c \times a) - (c \times b) - (d \times a) + (d \times b) =$$

$$= (a \times b) - (a \times c) + (b \times d) - (c \times d) + (b \times c) + (a \times b) + (c \times d) - (a \times d) - (a \times c) + (b \times c) + (a \times d) - (b \times d) =$$

$$= 2(a \times b) - 2(a \times c) + 2(b \times c);$$

As we can see the expression above is independent of d.