Answer on Question \#44080, Math, Vector Calculus

If $a \overrightarrow{ }=(0,1,-1)$ and $c \vec{c}=(1,1,1)$ are given vectors, then find a vector $b \overrightarrow{~ s a t i s f y i n g ~ a ~} \overrightarrow{x b} \overrightarrow{+c}=0$ and $\mathrm{a} \cdot \mathrm{b} \overrightarrow{ }=3$.

Solution.

Assume that vector \vec{b} has coordinates (x, y, z). Then $\vec{a} \times \vec{b}+\vec{c}=\left|\begin{array}{ccc}i & j & k \\ 0 & 1 & -1 \\ x & y & z\end{array}\right|+(1,1,1)=$
$i(z+y)-j x-k x+(1,1,1)=(1+y+z, 1-x, 1-x)=(0,0,0)$.
Also, $\vec{a} \cdot \vec{b}=0 \cdot x+1 \cdot y-1 \cdot z=y-z=3$.
Now we solve the system of equations:
$\left\{\begin{array}{c}1+y+z=0, \\ 1-x=0, \\ y-z=3 ;\end{array}\left\{\begin{array}{c}1+(z+3)+z=0, \\ x=1, \\ y=z+3 ;\end{array},\left\{\begin{array}{c}z=-2, \\ x=1, \\ y=1 .\end{array}\right.\right.\right.$
Hence, $\vec{b}=(1,1,-2)$.
Answer: (1,1, -2).

