Question \#44043 - Math - Geometry

The lengths of two sides of a right triangle containing the right angle differ by 6 cm . If the area of the triangle is $36 \mathrm{~cm}^{2}$, find the perimeter of the triangle.

Solution:

Let x is the length of $A C$, then $C B=x+6$ is the length of a base.

The area of the triangle is:
$S=\frac{A C \cdot B C}{2}=\frac{x(x+6)}{2}$
Given $S=36$.
$\frac{x(x+6)}{2}=36$
Expanding:
$x^{2}+6 x-72=0$
$x=-3 \pm \sqrt{9+72}=-3 \pm 9$
$x>0$, so $x=6$
$A C=6 \mathrm{~cm}$
$C B=x+6=6+6=12 \mathrm{~cm}$
Using Pythagoras' theorem:
$A C^{2}+C B^{2}=A B^{2}$
$A B=\sqrt{A C^{2}+C B^{2}}=\sqrt{12^{2}+6^{2}} \approx 13$
The perimeter of the triangle:
$\boldsymbol{P}=A B+A C+C B=6+12+13=31 \mathrm{~cm}$

