Answer on Question \#43904 - Math - Other

Prove that $1903<(3+\sqrt{13})^{4}<1904$.

Solution.

Firstly, compute $(3+\sqrt{13})^{4}$:

$$
\begin{gathered}
(3+\sqrt{13})^{4}=(9+2 \cdot 3 \cdot \sqrt{13}+13)^{2}=4 \cdot(11+3 \sqrt{13})^{2}= \\
=4 \cdot(121+2 \cdot 11 \cdot 3 \sqrt{13}+9 \cdot 13)=4 \cdot(238+66 \sqrt{13})=952+264 \sqrt{13}
\end{gathered}
$$

Now simplify our double inequality:

$$
\begin{gathered}
1903<(3+\sqrt{13})^{4}<1904 \Leftrightarrow 951<264 \sqrt{13}<952 \Leftrightarrow \frac{951}{264}<\sqrt{13}<\frac{952}{264} \Leftrightarrow \\
\Leftrightarrow \frac{317}{88}<\sqrt{13}<\frac{119}{33} \Leftrightarrow 3 \frac{53}{88}<\sqrt{13}<3 \frac{20}{33} \Leftrightarrow\left(3+\frac{53}{88}\right)^{2}<13<\left(3+\frac{20}{33}\right)^{2} \Leftrightarrow \\
\Leftrightarrow 9+6 \cdot \frac{53}{88}+\frac{53^{2}}{88^{2}}<13<9+6 \cdot \frac{20}{33}+\frac{20^{2}}{33^{2}} \Leftrightarrow \frac{27}{44}+\frac{53^{2}}{88^{2}}<1<\frac{7}{11}+\frac{20^{2}}{33^{2}}
\end{gathered}
$$

Consider these equations separately:

$$
\begin{aligned}
& \frac{27}{44}+\frac{53^{2}}{88^{2}}<1 \Leftrightarrow \frac{53^{2}}{88^{2}}<\frac{17}{44} \Leftrightarrow 53^{2}<88 \cdot 34 \Leftrightarrow 2809<2992-\text { it's true; } \\
& 1<\frac{7}{11}+\frac{20^{2}}{33^{2}} \Leftrightarrow \frac{4}{11}<\frac{400}{33^{2}} \Leftrightarrow 33 \cdot 12<400 \Leftrightarrow 396<400-\text { it's true; }
\end{aligned}
$$

Hence, both inequalities are true, so the whole double inequality is true.

