Answer on Question \#43817 - Math - Linear Algebra

Question:

Show that the vectors ($1-\mathrm{i}, \mathrm{i}$) and ($2,-1+\mathrm{i}$) in C^{2} are Linearly Dependent over Field C but Linearly Independent over R, where $\mathrm{i}=\mathrm{V}$ - 1

Solution.

Two vectors v_{1}, v_{2} are Linearly Dependent over field F if there exists scalar a in F such that

$$
v_{1}=a v_{2}
$$

In this case we have $v_{2}=(1-i, i), \quad v_{1}=(2,-1+i)$. It can be easily seen that $\mathrm{a}=(1+\mathrm{i})$.
Indeed $a v=(1+i)(1-i, i)=(2,-1+i)=v_{1}$.
Hence, this vectors are linearly dependent over field C. But they are linearly independent over R, because $a=(1+i)$ doesn't belong to R .

