Answer on Question \#43816 - Math - Linear Algebra

Show that the vectors (1-i,i) and (2,-l+i) in R^{2} are Linearly Dependent over Field but Linearly Independent over R , where $\mathrm{i}=\mathrm{V}-1$

Solution.

There are several inaccuracies in the condition. The first one vectors (1-i,i) and (2,-1+i) do not belong to R^{2} because their coordinates do not belong to R, so R^{2} should be changed on C^{2} and there missed a field over which these vectors are linearly dependent, we guess there would have to be C.

Two vectors v_{1}, v_{2} are Linearly Dependent over field F if there exist scalar a and b() in F such that

$$
a v_{1}+b v_{2}=0
$$

Let's try to find d these scalars

$$
a(1-i, i)+b(2,-1+i)=0
$$

We get a system:

$$
\left\{\begin{array} { c }
{ a (1 - i) + 2 b = 0 } \\
{ a i + b (- 1 + i) = 0 }
\end{array} \left\{\begin{array}{c}
b=\frac{a}{2}(-1+i) \\
a i+\frac{a}{2}(-1+i)(-1+i)=0 \\
a i+\frac{a}{2}(-1+i)(-1+i)=0 \\
a i+\frac{a}{2}(1-2 i-1)=0 \\
a-a=0
\end{array}\right.\right.
$$

So, we get that a can be arbitrary and $b=\frac{a}{2}(-1+i)$. Indeed, if take $\mathrm{a}=2$ then $\mathrm{b}=(-1+\mathrm{i})$.
And it is easy to check that $2(1-i, i)+(-1+i)(2,-1+i)=0$, since $(-1+\mathrm{i}) \in \mathrm{C}$, we get that these vectors are linearly dependent over C. And as $b=\frac{a}{2}(-1+i)$ we see that a and b can not be real simultaneously, so these vectors are not linearly dependent over R, hence they are linearly independent over R.

